informacje



Pokazywanie postów oznaczonych etykietą chemia organiczna. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą chemia organiczna. Pokaż wszystkie posty

środa, 2 kwietnia 2014

Nietypowe minerały

Kilka przykładów minerałów, które zdecydowanie wyróżniają się spośród reszty.


Arkanit
Minerał zawiera w sumie dosyć pospolite pierwiastki, jest to bowiem po prostu krystaliczny siarczan potasu, jest jednak minerałem rzadkim - znajduje się go na terenach hydrotermalnych, na przykład w Lacjum we Włoszech, w pobliżu złóż guano ale też w jaskiniach. Po raz pierwszy opisany jako kryształy na drewnianych podkładach toru wagoników w nieczynnej kopalni, został znaleziony w zaledwie kilku jaskiniach na świecie.
Jego nazwa bierze się z łacińskiego Arcanum co oznacza tajemnicę i nawiązuje zapewne do nie zbyt chętnego pojawiania się na powierzchni. Nazwa ta spodobała się fantastom, i pojawia się w kilku grach komputerowych, jako magiczny, cenny materiał.
Graczy jednak zapewne nie ucieszy wiadomość, że w jaskiniach arkanit powstaje z odparowywania nietoperzego moczu.

Urycyt
Innym minerałem którego powstanie wiąże się z moczem zwierzęcym, jest urycyt, czyli po prostu krystaliczny mocznik. Występuje w jaskiniach suchego klimatu





Karpatyt
Minerał organiczny stanowiący naturalną formę koronenu - węglowodoru aromatycznego w formie pierścienia złożonego z pierścieni benzenowych.

Po raz pierwszy opisany na Ukrainie, znany też ze Słowacji, został nazwany od gór Karpat. Ma postać żółtych igieł i dość wyraźnie świeci w ultrafiolecie na jasno niebiesko.
Sam węglowodór budzi zainteresowanie chemików ze względu na skłonność do samoorganizacji w kolumny ustawionych na płask cząsteczek, jak stos talerzy, co może znaleźć zastosowanie w chemii supramolekularnej.


Minerały płonących hałd
Zapłon skały płonnej wewnątrz pokopalnianej hałdy wywołuje powstanie specyficznych warunków, przypominających tereny wulkaniczne, zaś w miejscach gdzie z wnętrza hałdy wydobywają się gorące gazy, może dochodzić do krystalizacji nietypowych minerałów.
Hałdy zawierające siarczki mogą w ten sposób wytworzyć siarkę rodzimą, te powęglowe także  minerały amoniaku, jak siarczan glinowo-amonowy czyli Czermigit, stanowiący naturalną formę ałunu amonowego. Bardzo nietypowym minerałem jest Kladnoit, znaleziony po raz pierwszy w czeskim Kladnie, stanowiący skrystalizowany ftalimid, ważny odczynik w chemii organicznej. Ma postać przezroczystych płatków:
Towarzyszy mu niekiedy Hoelit, czyli 9,10 antrachinon, związek stanowiący prekursor barwników alizarynowych:


Ponieważ łatwo zamienia się w formę fenolową może stanowić dobry reduktor. Jest też używany w przemysłowej produkcji wody utlenionej. Jako minerał przybiera postać żółtych igieł:

Podobny minerał tworzy acetamid, czyli amid kwasu octowego.


Abelsonit
Jedyny minerał porfiryny.

Porfiryny to ważna grupa związków zawierający obszerny pierścień z czterech cząsteczek pirolu, skierowanych atomami azotu do środka. Pierścień chętnie tworzy kompleksy z atomami metalu, co ma znaczenie dla właściwości związku - porfiryna kompleksująca żelazo to hem, stanowiący aktywnie przenoszącą tlen częścią hemoglobiny we krwi. Chloryna kompleksująca magnez to chlorofil, zielony barwnik roślin. A Abelsonit to krystaliczny kompleks z niklem:
Porfiryny są na tyle trwałe, że często pozostają nierozłożone w pozostałościach po rozpadzie materii roślinnej. Wykrywa się je w torfie, węglu a zwłaszcza w ropie i asfalcie. Częściowo shydrolizowany chlorofil może rozpuszczać się w wodzie i w zetknięciu z solami niklu tworzyć ten specyficzny minerał. Ma postać czerwonych lub pomarańczowych igieł.

Mellit
Mellit nazywany jest też miodowym kamieniem. Ma postać charakterystycznych kryształków powstających w pobliżu złóż węgla brunatnego. Nietypowy jest jego skład - to sól glinowa kwasu melitowego, będącego pochodną benzenu z kwasową grupą karboksylową przy każdym węglu:
Diomignit
Jedyny dotychczas uznany płynny minerał. Ma postać mikroskopijnych płynnych inkluzji wewnątrz kryształów spodumenu i berylu, chemicznie rzecz biorąc to tetraboran litu.

czwartek, 20 marca 2014

Połączone acz nie powiązane

Chemia organiczna jest dziedziną tak obszerną, że można z niej czerpać niemal w nieskończoność.
Toteż i czerpię.

Z pewnością ze szkoły przypominacie sobie że atomy w cząsteczkach mogą być powiązane na trzy podstawowe sposoby - wiązaniami kowalencyjnymi, jonowymi i koordynacyjnymi. Zapewne mówiono tam także o wiązaniach wodorowych, zazwyczaj słabych i pomiędzy różnymi cząsteczkami, choć niekiedy na tyle silnych aby można było uznać powiązane cząsteczki za jeden związek. Oprócz tego istnieje kilka typów słabych wiązań, znanych tylko specjalistom, jak wiązania międzyhalogenowe, oddziaływania Pi-kation i tym podobne.
Jest jednak pewien typ szczególny - związek dwóch cząsteczek, nie związanych żadnym wiązaniem, a mimo to połączonych nierozerwalnie.

Łańcuch
Katenany to związki złożone z pierścieni makrocyklicznych, splecionych ze sobą niczym ogniwa łańcucha. Bez rozrywania prawdziwych wiązań któregoś z pierścieni nie da się oddzielić jednego od drugiego. Najprostsza forma to dwa pierścienie:
[1]


Istnieją oczywiście inne formy, na przykład cząsteczki z wielu połączonych liniowo pierścieni, czyli polikatenany, mające postać łańcucha.
Inny typ nieoficjalnie nazywany pretzelanami, to cząsteczka w której dwa pierścienie połączone są zarówno normalnie jak i przez przeplot:

[2]




Kolejny typ to katenany "kajdankowe" w którym pierścień jednej części jest połączony z dwoma pierścieniami drugiej:



[3]




Pierwsze syntezy takich układów opierały się na przeprowadzaniu reakcji zamknięcia pierścienia w mieszaninie cząsteczek pierścieniowych i liniowych. Z czystej statystyki wynikało, że raz na jakiś czas podłużna cząsteczka wchodzi w otwór pierścienia, i wobec tego czasem może dojść do zamknięcia jej w pierścień w takim położeniu. Wydajność reakcji była tak niska (rzędu 0,0001%) że aby wydzielić rozsądną ilość produktu, przeprowadzono ją w zbiorniku wielkości wanny. Poza potwierdzeniem, że takie związki mogą istnieć, nie pozwalało to na dalsze badania.
Bardziej pomocne okazały się reakcje, w których reagujące cząsteczki były ustawione przed zamknięciem pierścienia przez utworzenie kompleksu, przykładem taka reakcja w której dwie cząsteczki pochodnej fenantroliny z grupami fenolowymi złożono w kompleks z solami miedzi. Geometria kompleksu wymagała aby cząsteczki ustawiły się pod kątem, częściowo zazębiając boczne grupy. W takim ustawieniu można było zamienić je w pierścieniowe etery:
Zmiana warunków usuwająca wiążący atom metalu powodowała oddzielenie splecionych ogniw. W niektórych przypadkach wykorzystanie takich oddziaływań ustawiających cząsteczki przez spierścienieniem pozwala osiągnąć wydajność do 90%

Pierścienie mogą obracać się względem siebie, zwykle w niskich temperaturach ruch jest zablokowany, lecz zmiana warunków uruchamia ruch. Niejednokrotnie geometria powoduje że jeden pierścień obraca się wobec drugiego tylko w jedną stronę. Stąd pomysły zastosowania w maszynach molekularnych.

Turbinka
Drugi typ mechanicznych powiązań, to rotaksany, przywodzące na myśl oś koła przewleczoną przez piastę. Ich cząsteczki składają się z pierścienia nawleczonego na cząstkę podłużną, zawierającą na końcach grupy tak duże, iż pierścień nie może się przez nie przesunąć. I znów bez rozrywania pierścienia lub odrywania końcowych grup nie da się składowych jednostek oderwać od siebie.





Jeśli chodzi o syntezę, to jest tutaj kilka podejść - jedna wersja to nanizanie dziąki oddziaływaniom pierścienia na niedomkniętą oś, po czym zablokowanie drugiego końca. Inna metoda to przewleczenie przez pierścień swobodnej osi i dosztukowanie dużych grup na końcówkach. Kolejna to wykorzystanie zmian wielkości pierścienia w różnych warunkach - miesza się ze sobą podobną do hantli oś i pierścienie, po czym na przykład ogrzewa, pierścień przybiera konformację w której może wsunąć się na oś; po ochłodzeniu kurczy się i już nie może się uwolnić. Można też zamykać pierścień na osi, przytrzymując go za pomocą oddziaływań. Ostatni typ to sprzęganie połówek osi w kompleksie z pierścieniem:

Często oś główna zawiera ugrupowania oddziałujące z pierścieniem w sposób zależny od warunków, przez co przy ich zmianie przesuwa się z jednego położenia w drugie.

 Stąd bardzo obiecujące zastosowanie rotaksanów jako nanoczujników. Inny pomysł to ochrona wrażliwych barwników - w wielu z nich blaknięcie jest wywoływane przez atak utleniaczy na reaktywne ugrupowanie chromofora. Nanizany pierścień przesłania tą część zwiększając trwałość koloru.

Węzeł pierścieni
Kolejny interesujący typ to połączenie przynajmniej trzech pierścieni, spełniających zasady węzła Boromeuszy. Taki układ polega na tym, że z trzech pierścieni dwa nie są ze sobą splecione ani połączone, ponieważ jednak splatają się z trzecim, bez rozrywania go nie mogą być oderwane. Otrzymano kilka takich przykładów, tworząc pierścienie z cząsteczek liniowych ułożonych w przestrzeni za pomocą kompleksowania sześciu atomów metalu:


Pierścienie można połączyć na kilka różnych sposobów, czasem łącząc katenany i węzły, tu znalazłem jeszcze dwa ciekawe:
[4]

Nazwa bierze się od elementu na herbie rodu Boromeuszy, przedstawiającego trzy splecione w taki sposób pierścienia, zapewne naramienniki. Podobny kształt znany jest z rzeźbień i sztuki przedchrześcijańskiej Skandynawii, przedstawiając trzy splecione trójkąty. Uznając ich związek z rytuałami pogrzebowymi współcześni badacze nazwali go vallknuta to jest węzeł umarłych, zaś niekiedy neopoganie uznają go za symbol wiary, choć właściwie nie bardzo wiadomo co znaczył.

Czy da się stworzyć coś jeszcze? Z pewnością tak, zresztą wyobraźnia przestrzenna chemików potrafi wyprodukować na prawdę dziwaczne pomysły, które nieraz z samej tylko ciekawości są realizowane. Ja na przykład wymyśliłem sobie połączenie "pułapka na małpy" - jedna część w kształcie czaszy z otworem, wewnątrz cząsteczka podłużna, wystająca poza otwór, wewnątrz posiadająca zgrubienie większe niż otwór czaszy. Nazwa bierze się z indyjskich pułapek na małpy robionych ze skorup lub glinianych garnków, w których kładziono smakowity orzech. Małpa wsuwała łapę w wąski otwór, zaciskała pięść na orzechu i nie mogła jej ze środka wyjąć nie wyrzucając orzeszka. Jak donosili podróżnicy małpa mocowała się tak długo aż jej nie pochwycono.
Może kiedyś coś takiego zsyntetyzuję?
-----------
*http://www.org-chem.org/yuuki/catenane/catenane_en.html

[1] Patent  Anticancer agent EP 1724265 A1
[2]  Yi Liu , Scott A. Vignon , Xiyun Zhang , K. N. Houk and J. Fraser Stoddart, Conformational diastereoisomerism in a chiral pretzelane, DOI: 10.1039/B507679J (Communication) Chem. Commun., 2005, 3927-3929
[3]  http://www.xtl.ox.ac.uk/diamond-annual-review.html
[4]  David B. Amabilino and Lluïsa Pérez-García, Topology in molecules inspired, seen and represented, DOI: 10.1039/B806114A (Tutorial Review) Chem. Soc. Rev., 2009, 38, 1562-1571

piątek, 21 lutego 2014

Superglue + wata = ?

O superkleju już tu kiedyś pisałem w artykule na temat ujawniania odbitek linii papilarnych, teraz na krótko powrócę do tej substancji aby opowiedzieć o nietypowej reakcji.

Z pewnością wielu bądź widziało bądź choćby słyszało o tym filmie:

Wata polana superklejem zapala się? Czy to możliwe?

Superkleje opierają swe działanie na samorzutnej polimeryzacji cyjanoakrylanu metylu bądź etylu.
Jest to ester o specyficznej budowie - przy węglu alfa (pierwszy przy grupie karboksylowej) znajduje się grupa nitrylowa i jest on połączony z następnym węglem wiązaniem podwójnym. Zarówno grupa karboksylowa jak i nitrylowa mają skłonność do wyciągania elektronów, toteż wiązanie podwójne zostaje bardzo w nie zubożone. Przekłada się to na zwiększenie kwasowości protonów przy końcowym węglu. W tym przypadku skłonność do oddawania tych protonów jest na tyle duża, iż wystarcza bardzo słaba zasada by je oderwać. Gdy to następuje, zapoczątkowana zostaje reakcja łańcuchowa:

Nukleofilowa zasada odrywa protony na końcu, wiązanie podwójne pęka a na zwornikowym węglu w cząsteczce pojawia się silny ładunek ujemny. Taka cząsteczka sama staje się zasadą i atakuje drugą cząsteczkę. Po utworzeniu wiązania w drugiej cząsteczce pęka wiązanie podwójne, powstaje ładunek ujemny i następuje atak na trzecią cząsteczkę... I tak dalej aż utworzy się nam stała masa splątanych długich łańcuchów.

Zasadą zapoczątkowującą reakcję jest zwykle woda ze śladów wilgoci, bądź substancje klejonych powierzchni. Co jednak zachodzi po nasączeniu klejem bawełny?
Bawełna to celuloza, będąca długimi łańcuchami połączonych cząsteczek glukozy, te zaś posiadają grupy hydroksylowe, w łańcuchu cztery wolne. Własności nukleofilowe tych grup w celulozie są wprawdzie słabe, ale wystarczą do inicjowania reakcji. Duża powierzchnia włókien w kłębku w połączeniu z dużą ilością kleju powoduje zapoczątkowanie polimeryzacji o razu dużej masy akrylanów. W miarę powstawania kolejnych łańcuchów reakcja przyspiesza. Ponieważ jest samorzutna, w jej przebiegu wydziela się energia toteż zaklejony kłębek rozgrzewa się.
Czy jednak aż tak bardzo by zapłonąć? Karty charakterystyki klejów zwykle ostrzegają przed egzotermiczną reakcją z bawełną, czasem wspominając o możliwości zapłonu. Nie tak dawno SciFun wykonał własne pomiary, i maksymalna temperatura w dobrze odizolowanym kłębku wyniosła 115 stopni C, w otwartym ponad 80 stopni. To jednak za mało aby doszło do samozapłonu celulozy, bo na to potrzeba 400 stopni, zatem jego zdaniem kłębek został przez autora podpalony.
Moim zdaniem mogło jednak zajść coś trochę innego - kłębek był przecież cały oblany klejem. Wprawdzie temperatura samozapłonu cyjanoakrylanu to prawie 480 stopni[1], ale już temperatura zapłonu opar kleju to 85 stopni. Jest to temperatura w której opary zmieszane z powietrzem zapalają się po zainicjowaniu. A ponieważ opary te w postaci białego dymu pojawiły się nieco wcześniej, przebieg był zapewne taki - kłębek rozgrzał się do takiej temperatury, że wydzielił intensywne opary, było to temperatura w której opary zapalały się w zetknięciu z ogniem. Wystarczyło zapalić zapałkę w pobliżu kłębka a zapalał się nawet bez przykładania ognia, po prostu od zapłonu unoszących się par. Zastanawia mnie czy w takich warunkach wystarczająca mogłaby być iska elektryczności statycznej.

Podobna egzotermiczna reakcja następuje też z wełną i materiałami skórzanymi. Szansę na samozapłon miałaby w sprzyjających warunkach nitroceluloza dla której graniczna temperatura to 160-170 C, a także tłusta surowa bawełna dla której podaje się wartość 120 stopni. Znalazłem też informacje, że silnie rozgrzać może się spoina gdy próbuje się skleić tym plexiglas, co nie jest chyba tak zaskakujące zażywszy że pleksi to polimer akrylowy i powinien zawierać jeszcze ślady polimeryzatorów. Nie wywołuje to zapalenia ale materiał może się nadtopić. Już większe niebezpieczeństwo sprawia schnący pokost - nie raz zdarzało się że szmaty zabrudzone pokostem lub farbami olejnymi zapalały się od szybkiej reakcji utlenienia.

Myślę że warto tu dodać jeszcze jeden ciekawy przykład. Majsterkowicze czasem używają superkleju do uzupełnienia ubytków w przedmiotach, Mieszają wówczas klej z proszkiem do pieczenia czyli wodorowęglanem sodu. Mieszanka rozgrzewa się i puchnie, szybko jednak twardniejąc w lekką ale mocną masę. Jak łatwo się domyśleć, soda jest dobrą zasadą odrywającą protony i wywołującą szybką reakcję polimeryzacji. Równocześnie następuje częściowy jej rozkład, głównie chyba z powodu połączenia z oderwanymi protonami, może też od ciepła. Ponieważ masa szybko twardnieje zamiast pianki tworzy się lekka masa zwierająca mieszankę kleju, stałej, nieprzereagowanej sody i drobnych bąbelków dwutlenku węgla, która dobrze wypełnia ubytek przylegając do porowatych powierzchni.

Zatem prawdopodobnie klej wylany na bawełniany materiał nie wywoła zapłonu, mimo wszystko jednak rozgrzeje się wystarczająco mocno aby poparzyć. Powstające wówczas białe opary są szkodliwe dla płuc.
------
* Opis chemii i nietypowych zastosowań kleju

[1] http://apps.echa.europa.eu/registered/data/dossiers/DISS-9e9bc392-29b8-523e-e044-00144f67d031/AGGR-5815fa25-4c2c-4942-a8ff-6477f4252fb0_DISS-9e9bc392-29b8-523e-e044-00144f67d031.html

niedziela, 3 listopada 2013

Nietypowe organiczne

Znamy już kilka milionów związków organicznych a wciąż syntezowane są nowe (na pracowni otrzymałem jeden), toteż przebierając w tym ogromie, można wybrać sobie kilka strukturalnych osobliwości.

Domek
Związek jak z dziecięcego obrazka - housan o kształcie domku:
 Cząsteczka ze względu na naprężenia występuje w konformacji koperty - z trójkątnym daszkiem odchylonym od płaszczyzny kwadratowej podstawy, ze względu na reaktywność atomów wodoru na zgięciu i skłonność do zamiany w penten, ma ciekawe zastosowania w syntezie organicznej. Spotykam się jednak z innym związkiem, też nazywanym housanem (zresztą nazwy zwyczajowe często są nieoficjalne) wyglądający jak dwa pięciokąty połączone palikami:
Nazwa jednak chyba się szerzej nie przyjęła, więc oficjalnie jest to [5]-pryzman. Jego modyfikacja z dodatkowym węglem, tworzącym "iglicę" nazywana bywa churchanem przez skojarzenie z kościołem:


Szczególnym przypadkiem domkowatego związku jest Pagodan, który skojarzył się twórcom z kształtem chińskiej pagody (albo dwóch jedna na drugiej)


Kuban i inne figury geometryczne
Wśród węglowodorów o ciekawym kształcie, szczególną grupę stanowią te których szkielet stanowi krawędzie wielościanów foremnych, nazywane alkanami platońskimi. Najmniejszą taką molekułą jest Tetraedran, mający kształt czworościanu foremnego


W normalnym przypadku wiązania między atomami węgla tworzą szerszy kąt, bo 109 stopni, tutaj są z powodu geometrii bardzo ściśnięte, przez co naprężona cząsteczka w normalnych warunkach nie powstaje. Jak dotychczas otrzymano tylko pochodne z podstawnikami tert-butylowymi na każdym węglu. Takie pochodne są przestrzennie bardzo zatłoczone i stabilizowane przyciąganiem między grupami. Inne pochodne zawierają podstawniki silanowe, ale wersji niezatłoczonej, czyli czystego wielościanu jeszcze nie otrzymano. Teoretycznie powinien był związkiem stosunkowo trwałym przy nieobecności utleniaczy.
Znany jest też krzemowy analog. Podobną strukturę ma biały fosfor i żółty arsen.

Większą bryłą foremną jest sześcian, a jej węglowodorowy odpowiednik to Kuban - węglowodór o kształcie kostki do gry, z kątami prostymi między wiązaniami.:
Ta bryła też ma bardzo napięte wiązania, stąd przez długi czas sądzono, że jego synteza będzie niemożliwa. Dokonał tego w 1964 roku Philip Eaton w bardzo sprytny sposób, szyjąc kostkowaty szkielet niczym dziewiarka wymyślną rękawiczkę. A dokonał tego w 11 krokach, które warto chyba pokrótce opisać:

W pierwszym etapie otrzymał bromopochodną cyklopentadienonu. Jest to związek ulegający spontanicznie i dosyć łatwo reakcji addycji Dielsa-Adlera w której cząsteczka posiadająca dwa wiązania podwójne, tworzy sześciokątny pierścień z cząsteczką z jednym takim wiązaniem; jest to addycja typu 4+2 bo wiązania są tworzone przez przesunięcie czterech elektronów jednej i dwóch drugiej czasteczki.
 Utworzona w ten sposób cząsteczka zawiera dwa wiązania podwójne. Po naświetleniu światłem odpowiedniej długości następuje kolejna addycja, tym razem 2+2 gdy wiązania podwójne łączą się w czworokącik a cała cząsteczka zagina się w związek nr. 4. Ten etap jest przestrzennie trudniejszy do wyobrażenia, ale to dzięki niemu powstaje kilka pierwszych kątów prostych.  Jedna grupa ketonowa zostaje zabezpieczona przez zamienienie w acetal.
Pozostały nam już tylko dwa wiązania do zamknięcia klatki, każde trzeba zawiązać osobno i jeszcze odszczepić niepotrzebne podstawniki. Jedno zostaje otrzymane za pomocą przegrupowania Faworskiego, gdzie w roztworze wodorotlenku atom bromu zostaje usunięty z pobliża grupy ketonowej, a ta zamieniona w karboksylową, otrzymując związek nr. 5. Ponieważ grupa karboksylowa, właściwa kwasom organicznym, sterczy teraz niepotrzebnie z jednego z naroży, należy ją usunąć - najpierw tworzymy ester tertbutylowy, potem utleniamy do nadestru z grupą nadtlenkową, a na koniec usuwamy całe ugrupowanie przez ogrzanie, w wyniku którego dekarboksyluje do dwutlenku węgla.
Zostaje jeszcze jedno wiązanie do utworzenia, tam gdzie znajduje się druga grupa ketonowa, przez dotychczasowe etapy zabezpieczona przez zamianę w acetal. Usuwamy go przez hydrolizę i powtarzamy poprzednie etapy - przegrupowanie Faworskiego, zamiana w ester, utlenienie do nadestru i dekarboksylacja.
Na koniec zostaje nam czysty, nie podstawiony kuban.
Jest to związek stosunkowo trwały z powodu braku łatwych sposobów rozkładu, dlatego otrzymano liczne pochodne. Interesującą jest ośmionitrokuban, stanowiący materiał wybuchowy o największej znanej prędkości detonacji. Ponieważ jednak otrzymuje się go trudno i jest wagowo cenniejszy od złota, na razie nie znalazł zastosowania. Inną ciekawą pochodną jest Basketan - kuban z dodatkową poprzeczką, dającą kształt koszyka:
Ponieważ węgiel nie tworzy pięciu wiązań, następnym węglowodorem o kształcie wielościanu foremnego jest dopiero dodekaedran, a więc cząsteczka będąca szkieletem dwunastościanu z każdą ścianą pięciokątną:
Po raz pierwszy został zsyntezowany w 1982 roku w skomplikowanej syntezie obejmującej 29 kroków, których jednak nie będę tu opisywał, żeby nie zanudzać. Potem odkryto łatwiejszą drogę poprzez izomeryzację pagodanu, który już opisywałem. Jest to związek dosyć trwały, mało napięty, zbliżona do kulistej budowa powoduje, że niekiedy klasyfikuje się go do grupy fulleranów, czyli uwodornionych fullerenów.
Istnieją też liczne węglowodory tworzące inne bryły, na przykład pryzman, o kształcie trójkątnego pryzmatu:
Stanowi strukturalny izomer benzenu, mając wzór C6H6, cząsteczka jest tak silnie naprężona, że rozkłada się wybuchowo z wydzieleniem wodoru. Możliwe są dalsze pryzmany o innych wielokątnych podstawach - [4] pryzman to kuban, zdaje się że istnieje [8]-pryzman ale obliczenia wskazują na szansę istnienia większych, przypominających kształtem odcinki rurki.
Inne podobne do brył związki to oktaedran C12H12 będący szkieletem ośmiościanu z bokami cztero i pięciokątnymi, nonaedran C14H14, dekaedran C16H16 i większe[1]

Cząsteczka Iron maiden
Nazwa cząsteczki nie pochodzi od znanego zespołu muzycznego, aczkolwiek inspiracji nie sposób wykluczyć. Jest to pewien typ cyklofanów, a więc związków zawierających płaski pierścień aromatyczny i poprzeczkę łączącą jego atomy na ukos. W tym konkretnym przypadku trzy poprzeczki tworzą nad pierścieniem "klosz" zakończony zwornikowym węglem, z którego zwisa atom wodoru wycelowany w pierścień niczym kolec:
Stąd też zapewne skojarzenie ze średniowiecznym narzędziem tortur - skrzynią z kolcami na zamykanym wieku, raniącymi zamkniętego w jej osobnika (ale nie zabijającymi, bo wtedy nie było by tortury). Związek tego typu charakteryzuje się ciekawym sygnałem podczas badania przesunięć sygnału protonów za pomocą H-NMR - w technice tej bada się reakcję spinów jąder atomów wodoru umieszczonych w silnym polu magnetycznym, na fale radiowe. Czysty wodór dawałby sygnał przy stałej częstotliwości, wodór w cząsteczkach organicznych reaguje na różne częstotliwości zależnie od tego do czego jest doczepiony. Sygnały reakcji przedstawia się zwykle w skali przesunięć względem jakiegoś wzorca, dla którego przyjmuje się wartość 0, zwykle jest to tetrametylosilan, który daje sygnał poniżej sygnałów większości grup związków organicznych, sygnały pozostałych sięgają więc od 0 do 12 ppm.Wyjątkiem jest wodór tworzący "kolec" Żelaznej Dziewicy - jego przesunięcie sięga daleko za skalę do -4 ppm.


Bullwalen czyli chaos w stanie czystym
Bardzo prosta cząsteczka o wzorze C10H10, z trzema wiązaniami podwójnymi.

Elektrony w związkach organicznych chętnie wędrują, zmieniając kształt czasteczki i liczbę wiązań. W tej cząsteczce mają one wyjątkową swobodę - oprócz możliwości przeskakiwania na miejsce obok, mogą tworzyć nowe wiązania za sprawą przegrupowanie Cope'a. A w każdej z nowych struktur, elektrony mogą przeskakiwać w miejsce obok. Przez to liczba wszystkich możliwych struktur mezomerycznych wynosi dla tej małej cząsteczki aż 1,2 mln! W temperaturze pokojowej i wyższych wszystkie przeskoki następują nieustannie, zatem roztwór bullwalenu stanowi swoisty molekularny chaos - każda cząsteczka w innym stanie.

Nazwa pochodzi od pseudonimu chemika który przewidywał istnienie takiego związku Williama Doeringa, nazywanego Bykiem (Bull)

W zasadzie omówiłem tu praktycznie same węglowodory, związki z dodatkowymi innymi atomami omówię kiedy indziej.
-----
[1] Syntezy poliedrów
Strona miłośnika budowania struktur fullerenów z koralików i słomek: http://thebeadedmolecules.blogspot.com/

czwartek, 25 lipca 2013

Czy Kaczor Donald odkrył karbeny?

Bez wątpienia wielu spośród czytelników bloga zna komiksy o Kaczorze Donaldzie. Ja dawniej czytałem je namiętnie po wiele razy, lubiąc abstrakcyjny humor sytuacyjny - obecnie, sięgając pamięcią, odnajduję w ich fabułach niezauważalne dawniej nawiązania literackie, w tym świetną parodię Kruka Poego.*
W jednym z komiksów pod tytułem "Szalony Chemik" z 1944 roku. Donald zastaje siostrzeńców przy pracy nad doświadczeniami chemicznymi w ramach szkolnego projektu. Oczywiście musi się wmieszać, i pokazać co umie - po dodaniu do kolby przypadkowego reagenta prowokuje wybuch, po którym kolba spada mu na głowę.

Gdy z potężnym guzem na głowie przytomnieje, zaczyna zachowywać się jak chemik - guz bowiem, jak stwierdził potem doktor Qwik, wywołał u niego chorobliwą nadczynność mózgu. Produkuje wysoce łatwopalny Kaczynamit, po czym napełnia nim rakietę, i leci nią na księżyc. Po drodze guz znika, Donald przestaje pamiętać co robił i z przerażeniem obserwuje Księżyc, który następnie rakieta okrąża i powraca z taką dokładnością, że rozbija się w jego własnym ogródku.
Ta w sumie banalna historia nie zdobyłaby większego rozgłosu, gdyby nie naukowcy, którzy czasem lubią się odmóżdżać komiksami. Jeden z nich zauważył, że niedługo po przemianie, Donald wypowiada pewien przepis:

"Jeśli połączymy CH2 i NH4, i podgrzejemy atomy w mgle osmotycznej, otrzymamy pstry azot"**
No cóż. Całość brzmi oczywiście całkiem absurdalnie, ale w końcu trudno jest cały czas zmyślać, aby nie zdarzyło się mimowolnie wymyślić coś prawdziwego.

Chemia organiczna, zasadniczo, jest chemią związków węgla czterowartościowego - to jest mającego cztery wiązania. Mogą one być w rozmaity sposób upakowane - bądź każde osobno, z podczepioną inną grupą, bądź jako wiązania podwójne czy potrójne. Chemia węgla dwuwartościowego jest natomiast bardzo uboga - w zasadzie dotyczy wyłącznie tlenku węgla i jego kompleksów z metalami. Czym jest to powodowane? Struktura elektronowa z czterema elektronami zhybrydyzowanymi, a więc o wyrównanej energii, przy której atom może tworzyć cztery wiązania, jest w tym przypadku zdecydowanie korzystniejsza, od struktury z dwoma wiązaniami, w tym drugim bowiem wypadku dwa spośród czterech elektronów walencyjnych pozostają niewykorzystane, nie powstaje więc korzystny dla atomu oktet. Cząstka taka jest zatem nietrwała i bardzo aktywna.
Istnieć mogą dwa stany elektronowe - singletowy, gdzie dwa wolne elektrony tworzą parę, i trypletowy, gdzie każdy zajmuje osobny orbital a cała cząsteczka staje się podwójnym rodnikiem. Stan decyduje o trwałości i geometrii cząsteczki.
Początkowo istnienie karbenów, bo tak nazywają się cząsteczki z dwuwartościowym węglem, było przewidywane teoretycznie, były bowiem dobrym sposobem na wyjaśnienie mechanizmów pewnych reakcji, jednak z powodu nietrwałości bardzo długo brakowało potwierdzenia doświadczalnego. Dopiero w 1954 roku Wiliam Doering potwierdził istnienie dichlorokarbenu CCl2, jednak dopiero w 1960 roku odkryto w zamrożonych gazach najprostszy karben węglowodorowy - metylen, o wzorze CH2...

Rysownik komiksu Carl Barks miał talent do wymyślania prawdopodobnych rozwiązań. Na tyle prawdopodobnych, że raz już sprawiły kłopot pewnemu wynalazcy. Duński wynalazca Karl Kroyer wynalazł metodę bardzo szybkiego podnoszenia z dna zatopionych statków - do ładowni należało wtłoczyć przy pomocy wody pod ciśnieniem, lekkie, puste wewnątrz plastikowe kulki. Każda kulka miała niewielką wyporność, lecz tysiące kulek wypierają sobą na tyle dużo wody że statek może zostać uniesiony. Metoda była kilka razy stosowana, na przykład w latach 60. w Kuwejcie, gdzie zatopiony w dokach statek Al Kuwait, przewożący owce był w ciepłych wodach zagrożeniem epidemicznym. Do jego podniesienia użyto 27 milionów styropianowych kulek, ekspandowanych parą wodną na nabrzeżu do rozmiarów piłek pingpongowych, które wprawdzie na sucho ważyły 60 ton, ale po wepchnięciu pod wodę zdołały unieść ważący 2 tysiące ton statek[1]
Kroyer opatentował metodę w Stanach i Wielkiej Brytanii, ale gdy próbował w Holandii urząd odmówił rejestracji, powołując się na przepis mówiący, ze w ciągu 15 lat przed złożeniem wniosku nie powinny być dostępne opisy podobnych rozwiązań. Jaki był to opis? Dokładnie nie wiadomo - dokumenty już się nie zachowały, poza ogólną notką, ale miłośnicy Kaczora powiązali to z komiksem z 1949 roku, w którym Donald podnosi z dna morza zatopiony jacht, wtłaczając do ładowni setki piłeczek pingpongowych.[2]
Zatem jak by nie patrzeć, karben metylenowy pojawił się w komiksie 16 lat przed faktycznym odkryciem. Naukowcy docenili fantazję rysownika, wykazując się przy tym subtelnym poczuciem humoru.
W 1963 roku wydano obszerną pracę Spin States of Carbenes, gdzie jej autorzy Gaspar i Hammond wspominają pod koniec o pewnej zasugerowanej kilkanaście lat wcześniej reakcji z wykorzystaniem kabenów, która dotychczas nie została zweryfikowana, choć należała do najciekawszych propozycji literaturowych. Przy tym akapicie widniał poważnie wyglądający przypis 91, odsyłający do pracy niejakiego D. Ducka opublikowanej w komiksie z 1944 roku[3]
Żart został później powtórzony w kilku pracach teoretycznych a nawet w pierwszym wydaniu sławnego podręcznika Morrisona i Boyda!

Ciekawe jaką cytowalność ma dziś pan D. Duck?

Karbeny, już po odkryciu, okazały się cząstkami niezwykle przydatnymi - wprawdzie z powodu niezwykłej reaktywności nie dało się ich wyodrębnić, ale wytwarzane in situ w mieszaninie reakcyjnej, stały się doskonałymi substratami do pewnych specyficznych reakcji.
Najprostszymi sposobami wytwarzania karbenów, jest fotoliza lub termoliza związków diazowych, z ugrupowaniem =N=N, odszczepianym w formie gazowego azotu, lub ketenów z ugrupowaniem C=C=O odszczepiającym tlenek węgla.

W roztworach proste keteny tworzą się podczas działania silnych zasad na cząsteczki zawierające dwa halogeny przy jednym węglu - przykładem generowanie metylenu z chlorku metylenu CH2Cl2, w stężonym roztworze wodorotlenku sodu.
Najczęstszą reakcją jakiej ulegają karbeny, jest addycja do wiązań podwójnych, z wytworzeniem trójkątnego pierścienia, przy czym sposób przebiegu reakcji jest zależny od rodzaju karbenu - w singletowym para elektronów oddziałuje równocześnie z obydwoma atomami, przez co zachowana zostaje pierwotna konfiguracja innych podstawników. Karbeny trypletowe reagują elektron po elektronie, dając cząsteczce czas na różne tam obroty i wygięcia, przez co konfiguracja może ulegać zmianie:

Do najważniejszych reakcji z użyciem karbenów należy synteza Reimera-Tiemanna , gdzie przyłączany do pierścienia aromatycznego dichlorokarben, hydrolizuje potem do grupy aldehydowej. Dawniej w ten sposób syntezowano wanilinę z gwajakolu, znanego jako lek wykrztuśny. Tutaj przykład syntezy kwasu salicylowego z fenolu:


Obecnie znamy też grupę karbenów na tyle dobrze stabilizowanych rozległymi podstawnikami, że nie tylko daje się je wydzielić z roztworu, ale też niektóre można wykrystalizować i przechowywać na powietrzu przez dłuższy czas. Innym ciekawym zastosowaniem są barwniki karbenowe - cząsteczki barwników do farbowania tkanin często słabo wiążą się z włóknem, co wymusza dodawanie do ich cząsteczek specjalnych ugrupowań, łączących się z substancją włókna. W niektórych przypadkach możliwe jest otrzymanie z barwnika pochodnej karbenowej, która będąc związkiem bardzo aktywnym, łączy się z włóknem bardzo trwałymi wiązaniami. Niektóre procesy polimeryzacji przebiegają z wytwarzaniem tych molekuł.

Wróćmy jednak do komiksu - co się stanie jeśli połączymy CH2 i NH4?
Karbeny chętnie przyłączają proton, natomiast jon amonowy chętnie go oddaje, można zatem spodziewać się powstania karbokationów metylowych CH3+, bardzo nietrwałych, i amoniaku. W dalszej kolejności można spodziewać się powstawania metanu lub metyloaminy. Czy przy okazji powstaje pstry azot, jak dotychczas chyba nie sprawdzano.


No proszę. Kto by pomyślał do czego może prowadzić czytanie komiksów.
Pozostaje mieć nadzieję że również dowciplina z komiksów o Tytusie, Romku i Atomku zostanie kiedyś odkryta - a szczegółowa struktura cząsteczki została w komiksie podana.

---------
* W komiksie tym Mickey siedział sam w pokoju, gdy rozległ się dzwonek u drzwi, donośne Ding! Dong!  Podszedł, otworzył, ale za nimi nikogo nie było. Potem znów usłyszał dzwonek i znów za drzwiami nikogo nie było. Myśląc, że to jakiś żartowniś stanął z ręką na klamce i po pierwszym Ding! otworzył drzwi. Sprawcą zamieszania okazał się zwieszający na nici pająk, z jednych odnóżach trzymający dzwonki a w innych pałeczkę, który zapewne po każdym dzwonieniu szybko podciągał się do góry.

** Tłumaczenie "speckled nitrogen" jako "pstry azot" wydaje mi się lepsze niż "azot w ciapki" jak to zrobił polski tłumacz. Nie ubajkowiajmy nadmiernie. 

[1] http://www.starch.dk/isi/kroyer/schrooge.asp
[2] http://www.iusmentis.com/patents/priorart/donaldduck/
[3] http://www.seriesam.com/barks/detc_ccus_wdc0044-x1.html
- Kaczor Donald: Szalony Chemik - skan jpg wersji polskiej.
- http://goodcomics.comicbookresources.com/2007/01/25/comic-book-urban-legends-revealed-87/