informacje



Pokazywanie postów oznaczonych etykietą pierwiastki. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą pierwiastki. Pokaż wszystkie posty

środa, 15 marca 2023

Czy wodór jest litowcem?

Jeśli napatrzyliście się w szkole na tablicę Mendelejewa to zapewne zauważyliście, że układ pierwiastków jest nieco rogaty. Po lewej nad wszystkimi pierwiastkami w górę wystaje zwykle wodór a po prawej nad gazami szlachetnymi hel. Nie jest to jednak jedyny sposób rysowania - czasem wodór umieszczany jest koło helu, zupełnie jakby był najlżejszym fluorowcem.
Jak więc powinno być? Tu już sami chemicy nie są do końca pewni.




Układ okresowy to bardzo przydatne zestawienie naszej wiedzy o pierwiastkach. Każdy jego element jest nieprzypadkowy. Podział na bloki obrazuje na jakiej podpowłoce znajdują się na elektrony  walencyjne; okresy wskazują na liczbę powłok elektronowych. Pierwiastki na końcach bloków mają pewne specyficzne właściwości. Niektóre wykazują podobieństwo diagonalne.
 Jest multum takich prostych zależności, które można wyjaśnić wielkością atomu, energią jonizacji i właściwościami powłok, a które obrazuje tablica jako podobieństwa sąsiadujących pierwiastków.

Jaką zależność ma obrazować pozycja wodoru? Jest wyrzucany nad wszystkie pierwiastki, bo wraz z helem tworzy pierwszy okres. Rozpoczyna zbiór pierwiastków mających tylko jedną powłokę. 

Fluorowce

Za pomysłem aby umieszczać wodór nad fluorem stoją dwie właściwości - wodór potrzebuje tylko jednego elektronu aby uzyskać zamkniętą zewnętrzną powłokę. W jego przypadku to dublet elektronów, u fluorowców oktet. Tworzy wtedy anion wodorkowy. Ponadto ma elektroujemność wyższą niż większość metali. Może więc tworzyć związki z metalami o niższej elektroujemności. Atom metalu alkalicznego jonizuje się tworząc kation, a wodór tworzy anion wodorkowy. Związek nabiera charakteru jonowej soli, ma wysoką temperaturę topnienia. Wodorek sodu przyjmuje strukturę krystaliczną podobną do chlorku sodu.  W stanie wolnym formuje dwuatomowe cząsteczki a po schłodzeniu do temperatury krzepnięcia tworzy kryształy molekularne. 

Oddając elektron, atom wodoru w zasadzie nie tworzy wolnych kationów. Kation wodorowy niezwiązany to swobodny proton, który w reakcjach chemicznych występuje tylko w formach związanych, zwykle solwatowany rozpuszczalnikiem. Energia jonizacja wodoru do wolnego elektronu i nagiego protonu jest wyższa niż u metali, podobna do fluorowców. No i ostatecznie w stanie ciekłym i stałym nie wykazuje charakteru metalicznego.

Litowce

Z drugiej strony wodór ma elektroujemność niższą od wielu niemetali i tworzy z fluorowcami połączenia, w których ładunek jest przeniesiony na niemetal. Z większością pierwiastków o bardziej pośrednich elektroujemnościach tworzy wiązania kowalencyjne, jak to jest w związkach organicznych. Anion wodorkowy jest nietrwały, natomiast formy kationowe, w których proton jest związany z inną cząsteczką, są stabilne. Pierwiastkowy wodór reaguje z innymi pierwiastkami jako reduktor a nie utleniacz. Wyjątkiem są tylko wspomniane związki z metalami alkalicznymi.  

Najważniejszą właściwością, która decyduje o umieszczaniu go zwykle na początku układu, jest budowa zewnętrznej powłoki elektronowej. Posiada jeden elektron na powłoce s, zatem pasuje do pierwiastków bloku s. Budowę [X] 1s mają wszystkie litowce. Pod ekstremalnie wysokimi ciśnieniami nabiera charakteru metalicznego - z drugiej strony teoretycznie każdy pierwiastek pod bardzo wysokim ciśnieniem powinien nabrać takiego charakteru.

Fluorowce posiadają elektrony walencyjne na powłoce p i to na nią ściągają elektron aby uzyskać oktet, a wodór takiej powłoki w ogóle nie posiada. 



Za nietypowe właściwości wodoru odpowiada mały rozmiar całego atomu. Tylko jeden elektron na najbliższej orbicie czuje ładunek jądra bardzo efektywnie. Stąd elektroujemność 2,2 w skali Paulinga, podobna do metali przejściowych i półmetali. Za tym idą właściwości i reaktywność pośrednie między metalami alkalicznymi a niemetalami. Stąd nawet propozycja, z którą także się spotkałem, aby na tablicach umieszczać go samotnie gdzieś nad środkiem Układu Okresowego. Dla cząsteczek i atomów o właściwościach trochę podobnych do litowców zaproponowano kategorię pseudometali alkalicznych, analogicznie do pseudohalogenów. Należałby do nich pierwiastek tal, rodnik amonowy (*NH4) [1], niektóre cząsteczki organiczne a w niektórych sytuacjach podobne jest nawet srebro. 

------

https://www.reed.edu/reed_magazine/summer2009/columns/NoAA/downloads/CronynHydrogen.pdf

[1] https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/chem.201101949

wtorek, 14 czerwca 2022

Kiedyś w laboratorium (87.)


Jod jako ciało stałe nie ma w ogóle fioletowego koloru, błyszczy się i przypomina ciemny metal lub grafit.

niedziela, 31 marca 2019

Pierwiastki z uzdrowiska

Historie odkryć pierwiastków są ciekawe, zwłaszcza gdy wiążą się ze szczególnymi okolicznościami, przełomami naukowymi bądź wymagały bardzo skrupulatnej i wyczerpującej pracy. Tak też jest z dokonaniami Bunsena i Kirchoffa, którzy przy pomocy zupełnie nowej techniki badawczej odkryli dwa nieznane wcześniej pierwiastki, i to w popularnej w tym czasie wodzie mineralnej.

Pierwsze sensowne badania światła białego opisał Newton, który wykazał, że cienki promień światła słonecznego, po załamaniu w szklanym pryzmacie, rozdziela się na barwy tworzące pasmo tęczy. Wytłumaczył to zjawisko w oparciu o swoją cząsteczkową teorię światła, która uznawała je za strumień lekkich cząstek. Były one najwyraźniej podzielone na różne rodzaje, każdy rodzaj cząsteczek wywoływał inne wrażenie zmysłowe a więc wrażenie innego koloru. Białe światło było po prostu mieszanką wszystkich typów, zaś określony kolor przedmiotów wynikał z pochłaniania pewnych rodzajów cząstek światła. W zasadzie jednak poza eksperymentami z kolorowymi filtrami, bardziej precyzyjnych badań wzoru rozszczepionego światła, tak zwanego widma, nie przeprowadzano.

Kolejnym odkryciem, które przyczyniło się do powstania spektroskopii, było dostrzeżenie ciemnych linii w widmie słońca. Na początku XIX wieku zauważył je chemik Wollaston, ale jedynie luźno o nich wspomniał w pracy, w której dowodził, że to naturalne granice między kolorami. Dopiero w 1814 roku szczegółowy opis linii podał niemiecki optyk i astronom Fraunhofer.
Zajmował się on przede wszystkim doskonaleniem przyrządów optycznych. Aby wyszlifować dobrej jakości soczewę, należało między innymi znać wartość załamania światła w szkle, ta jednak jest zmienna zależnie od długości fali światła (wizualnie: koloru) oraz właściwości szkła, zmiennej zależnie od partii. Próbując wyznaczyć jakiś stały punkt graniczny, oglądał przez lunetkę widmo rozszczepione w prymacie. Zauważył wtedy, że przy dobrej rozdzielczości kolory wydają się podzielone ciemnymi kreseczkami, zupełnie jakby słońce w pewnych wartościach odcienia nie świeciło. Najintensywniejsze linie zostały przezeń wykorzystane do wyznaczania współczynnika załamania szkieł optycznych - miały stały układ, niezależny od pory dnia ani miejsca obserwacji, wystarczyło z badanego szkła zrobić pryzmat i wyznaczyć kąt pomiędzy przedłużeniem promienia wpadającego w pryzmat a położeniem ciemnej linii w załamanym widmie. Aby wyznaczać kąty, w oparciu o konstrukcję teodolitu opracował goniometr, w którym ruchoma lunetka skierowana na centralny pryzmat wyznaczała kąty załamania.
Po czym znów w temacie nie zachodziło nic istotnego, aż w połowie XIX wieku niemiecki chemik Robert Wilhelm Bunsen zainteresował się rozróżnianiem pierwiastków po kolorze płomienia.
Bunsen i Kirchoff

Wiadomo było, że wiele pierwiastków, po wprowadzeniu ich soli do płomienia, zabarwiało go na określony kolor. Sód na żółto, wapń na pomarańczowo, potas na fioletowo. Bunsen miał akurat o tyle dobre warunki do badania zjawiska, bo dopiero co wynalazł palnik, nazwany jego nazwiskiem, dający gorący i czysty płomień. W zasadzie mogła to być świetna metoda analityczna, ale sprawiała pewne trudności - ciężko było stosować ją do mieszanek pierwiastków, bo ostateczny kolor wychodził zmieszany, a ponadto wiele pierwiastków barwiło płomień na taki sam kolor. Zarówno miedź jak i bor dawały zielone zabarwienie, może nieco różniły się odcienie, ale było to trudne do uchwycenia.
Sole miedzi w płomieniu palnika Bunsena

W pracy tej zaczął mu pomagać fizyk Gustaw Kirchoff, który zaproponował przyjrzenie się zabarwionym płomieniom przez pryzmat. I tu nastąpiło wielkie zaskoczenie, okazało się bowiem, że rozszczepione przez pryzmat kolorowe światło zabarwionych promieni nie ma formy kawałka tęczy o jednym kolorze. Zamiast tego dzieliło się na szereg wąskich paseczków, mieszczących się w określonych miejscach tęczy. Kolor obserwowany był wypadkową nałożenia się tych odcieni, przy czym ten sam kolor płomienia różnych substancji mógł być wynikiem nałożenia bardzo różnie ułożonych pasm barw.
Aby opracować te różnice precyzyjnie i ilościowo, Kirchoff skorzystał ze znanej już konstrukcji goniometru, mierząc położenia pasm jako kąty między przedłużeniem promienia padającego a linią wyznaczaną przez załamany promień barwny danego pasma.
Naukowcy ci zaczęli więc badać czyste próbki bardzo różnych związków tych samych pierwiastków, aby sprawdzić czy forma chemiczna wpływa na wzór w świetle zabarwionych płomieni. Po sprawdzeniu różnych kombinacji doszli do wniosku, że niezależnie od tego czy pierwiastek ma postać czystą czy chemicznie związaną, wprowadzony do płomienia wywoła w nim pojaśnienie w zawsze tych samych miejscach w widmie. A ponieważ wzory pasm świetlnych w przebadanych pierwiastkach się nie powtarzały, wyglądało na to, że jest to nowa i niezwykle dokładna metoda oznaczania zawartości pierwiastków w badanych substancjach.

Nie minęło wiele czasu, a skojarzyli, że jasne linie w świecących płomieniach i ciemne linie w widmie słońca, mają ze sobą coś wspólnego. Niektóre występowały w tych samych miejscach. Niektóre pierwiastki świeciły, tworząc pasmo położone tam, gdzie w świetle słońca brakowało pewnego zakresu. Aby jakoś to wyjaśnić postanowili sprawdzić, czy da się w jakiś sposób tak podziałać pierwiastkami na światło, aby zamiast emitować jaśniejsze pasma osłabiały je w świetle płomienia. Okazało się że wystarczy przepuścić światło żarowe, o pełnym widmie, przez płomień zabarwiony solami danego pierwiastka.
Żaden z nich nie wiedział co konkretnie tam zachodzi, ale wyglądało na to, że świecenie i pochłanianie światła w określonych zakresach są powiązane. Ciemne linie w świetle słońca oznaczały, że między widoczną świecącą powierzchnią a obserwatorem muszą być obecne opary pierwiastków, pochodzące zapewne ze słabo świecącej atmosfery tej gwiazdy. Poprzez zwykłe porównanie ciemnych linii z liniami emisji kolorowych płomieni można było zatem poznać skład chemiczny słońca.
Widmo wzbudzonego helu


To, dlaczego zachodzą oba te zjawiska, oraz czemu pierwiastki w płomieniu świecą tylko w pewnych wąskich zakresach, zostało wyjaśnione dopiero po opracowaniu modelu atomu. Wystarczy już będący uproszczeniem model Bohra, aby zrozumieć w czym rzecz. Atom składa się z dodatnio naładowanego jądra i krążących wokół elektronów, które grupują się w powłoki o różnym oddaleniu od jądra. Każdej powłoce odpowiada różny stan energetyczny elektronu - im dalej od jądra, tym więcej energii kinetycznej posiada obecny na niej elektron.
Wartości energii poszczególnych powłok nie są jednak dowolne i przyjmują określone wartości oddzielone konkretnymi odstępami, pomiędzy tymi wartościami nie pojawiają się inne powłoki. Mówi się więc, że energia elektronów w atomie jest "porcjowana", czyli kwantowana.
Elektron, jako lekki nośnik ujemnego ładunku elektrycznego, może oddziaływać ze światłem, będącym przecież falą elektro-magnetyczną. Fala światła niesie ze sobą pewną energię, zmieniającą się wraz z długością tej fali. Najwięcej energii ze światła widzialnego mają więc promienie fioletowe a najmniej czerwone.

No i otóż: oddziaływanie między elektronem a kwantem światła może polegać na przekazaniu energii elektronowi. Ponieważ jednak wartości energii, jakie może przyjmować w atomie elektron, są określone, i nie może on mieć energii pomiędzy poziomami dwóch powłok, to elektron przyjąć może tylko określoną porcję tejże energii z padającego światła. Jeśli fala, z którą elektron się zetknie, będzie posiadała energię odpowiadającą dokładnie odstępowi między powłokami atomu, to elektron pochłonie tą falę i wskoczy na powłokę o wyższej energii. Jeśli natomiast fala będzie posiadała energię o wartości pośredniej, to do pochłonięcia nie dojdzie, światło to się odbije (nie następuje pochłonięcie tylko fragmentu energii fali odpowiadającego najbliższemu odstępowi energetycznemu).
Jednak stan w którym znalazł się teraz elektron na bardziej energetycznej powłoce nie jest zbyt trwały. Przeskakując zostawił po sobie puste miejsce, ponieważ zaś układy dążą generalnie do najniższej możliwej energii, szybko któryś elektron z wyższych powłok spada w to wolne miejsce. W wyniku tego następuje uwolnienie energii w formie fali światła o tej samej długości co uprzednio pochłonięta
Gdy źródłem energii dla elektronu we wzbudzonym pierwiastku było światło, wypromieniowywanie z powrotem tej samej fali co pochłonięta powoduje paradoksalne osłabienie intensywności tego wycinka widma w promieniu prześwitującym. Wynika to stąd, że ze względu na pewien skończony czas trwania stanu wzbudzonego, nie zostaje zachowany pierwotny kierunek. Obłok atomów oświetlony przechodzącym światłem świeci więc wzbudzającą go długością fali we wszystkich kierunkach w przestrzeni; tylko niewielka część jest emitowana zgodnie z kierunkiem promienia, my więc obserwujemy w tęczy takiego światła ciemne pasmo absorpcji.
Źródłem energii do wzbudzenia może być też jednak temperatura. Płomień taki świeci więc dookoła światłem ze wzbogaconym jednym fragmentem, obserwujemy wtedy świecący kolorowo płomień a w jego widmie jasne pasma emisji. Najlepiej jest obserwować to w pomieniach, które same świecą słabo, a więc w wodorowo-tlenowym lub mieszanki węglowodorów lotnych z dużą ilością powietrza.
Źródłem energii wzbudzenia atomów mogą być też zderzenia z cząstkami promieniowania lub z przyspieszonymi elektronami. Praktycznie jest to wykorzystywane w lampach neonowych - elektrony emitowane z elektrod w szklanej rurce, w której gaz znajduje się pod bardzo niskim ciśnieniem, są przyspieszane w polu elektrycznym. Zderzając się z atomami gazu, wzbudzają je do świecenia, w przypadku neonu jest to światło pomarańczowo-czerwone, dla ksenonu światło wydaje się białe. W świetlówkach kompaktowych elektrony wzbudzają opary rtęci, która emituje między innymi ultrafiolet. Ten pada na luminofor pokrywający bańkę. Substancje w nim zawarte pochłaniają ultrafiolet i ulegają wzbudzeniu elektronowemu, z którego wychodzą ze zmianą długości fali, emitując światło  zakresu widzialnego. Wreszcie w znanych nam lampach sodowych, które oświetlają nocą ulice, elektrony wzbudzają opary sodu, co wywołuje pomarańczową emisję. Światło lamp sodowych składa się praktycznie tylko z dwóch bliskich linii oznaczanych jako D, a więc rozszczepienie go pryzmatem da jedynie pomarańczową kreskę zamiast tęczy.

Dlaczego jednak układ linii widmowych jest dla każdego pierwiastka inny? Taki na przykład wapń od potasu różni się jednym dodatkowym elektronem na tej samej podpowłoce s, więc wydawałoby się, że w zasadzie powinien mieć podobne widmo, tylko z dodatkiem od przejść jednego elektronu więcej. Tymczasem ich widma na tyle się różnią, że potas barwi płomień na fioletowo, a wapń na pomarańczowo.
U góry Ca u dołu K
Efekt ten wynika z dodatkowych wpływów, jakie ma na poziomy energetyczne powłok (a więc i długości fali emisji podczas przejść między nimi) przyrost ilości protonów w jądrze.
Porównajmy coś wyraźnego: sąsiadujące ze sobą pierwiastki lit i beryl. Oba mają już zamkniętą powłokę elektronową 1s, a elektrony biorące udział w reakcjach chemicznej znajdują się na zewnętrznej powłoce 2s. Lit ma na niej jeden elektron, a beryl dwa. Powłoki te różnią się jednak między pierwiastkami średnicą i energią potrzebną do oderwania jednego elektronu. Atom litu ma promień atomowy 152 pm, atom berylu 112 pm. Energia pierwszej jonizacji litu to 520 kJ/mol, dla berylu 899 kJ/mol.
Te duże różnice, sięgające 30% są wywoływane tym, że elektrony na tej samej liczbie powłok są przyciągane przez jądro o zdecydowanie różnym ładunku. Jądro litu ma ładunek +3 a berylu +4, więc zewnętrzne elektrony w tym drugim są przyciągane mocniej. W efekcie obie powłoki, zarówno zewnętrzna 2s jak i wewnętrzna 1s (oraz potencjalna 2p na jaką wskoczą wzbudzone elektrony), znajdują się bliżej jądra a odstęp między nimi ma inną wartość. Zdecydowanie więc zmienia się wartość energii związana z przejściami elektronowymi między tymi powłokami, a wraz z energiami przejść zmienia się długość fali (kolor) przy której w widmie pojawia się pasmo emisyjne. Dla litu widmo jest stosunkowo proste - w zakresie widzialnym kilkanaście linii, z czego najintensywniejsze są trzy w zakresie zielonym, żółtym i czerwonym:
W przypadku berylu w tym zakresie barw nie widać linii, a te najwyraźniejsze lokują się w zakresie koloru niebieskiego i fioletowego:

Wpływ tego zjawiska widać choćby po zmianach średnic atomowych w układzie okresowym - w okresie spadają one w obrębie danego bloku, odzwierciedlając fakt przyciągania tej samej zewnętrznej powłoki, na której tylko przyrasta ilość elektronów, przez coraz cięższe jądro. Wszystkie więc powłoki i podpowłoki są bardziej przysuwane do środka, co przesuwa w widmie linie emisyjne.

Różnica w sile ładunku przyciągającego elektrony i w związku z tym zmiana odstępów energetycznych między wszystkimi powłokami w całym atomie, oczywiście spada w miarę wzrostu mas atomowych. O ile między litem a berylem wzrost o jeden proton stanowił wzrost ładunku o 33%, to dla takiego cezu i baru różnica wynosi 1,8%. Dodatkowe znaczenie mają więc również właściwości powłok, które w różnym stopniu oddziałują z ładunkiem jądra, co oznacza, że zmiana ładunku o tą samą wartość między parami różnych pierwiastków, wywoła odmienne przesunięcie powłok i nieproporcjonalną zmianę energii przejść.  Słabo ładunek jądra ekranują podpowłoki d, a jeszcze słabiej podpowłoki f, więc następne po nich podpowłoki mogą zostać silniej poprzesuwane, niżby to wynikało z samej zmiany średnicy tej najbardziej zewnętrznej.
Źródłem dodatkowych efektów są różnice w sposobie obsadzania powłok przez elektrony, na przykład  następująca w bloku D promocja elektronowa, oraz opisywane w innym artykule efekty relatywistyczne, które mocniej oddziałują na powłoki najbardziej zewnętrzne, zmieniając ich oddalenie i odstępy energetyczne.
Przechodząc w dół w układzie okresowym mamy też pierwiastki z coraz większą ilością samych powłok, co umożliwia powstawanie dodatkowych przejść, wzrasta przez to ilość linii w widmie. Widmo ciężkich pierwiastków może być niekiedy tak wypełnione licznymi liniami, że przy kiepskiej rozdzielczości może wydawać się ciągłe.
Czy linie dla różnych pierwiastków zawsze wypadają w innych miejscach? Nie wszystkie, czasem pojedyncze linie dla różnych przejść elektronowych mogą w różnych pierwiastkach wypaść na tej samej częstotliwości, jednak do porównania mamy zwykle kilkanaście czy kilkadziesiąt dalszych linii, przez co zupełne pomylenie różnych pierwiastków jest trudne.

Ale wróćmy do Kirchoffa i Bunsena.

Gdy więc badacze przebadali próbki znanych pierwiastków, obudziła się w nich czysta ciekawość. Rozglądali się wokoło i zastanawiali "Co by tu jeszcze?". Pod kątem zawartości pierwiastków sprawdzali sól kuchenną, ziemię, jedzenie a nawet popiół z cygar namiętnie palonych przez Bunsena. Jednym z wyborów były wody mineralne, które zgodnie z nazwą zawierają wiele soli mineralnych. Wśród przebadanych typów znalazła się też alkaliczna solanka z uzdrowiska Bad Dürkheim w niemieckiej Nadrenii.
Pierwsza próba, z wprowadzeniem odparowanych soli do płomienia, zaowocowała bogactwem emisji wielu, wzajemnie się zagłuszających pierwiastków, trzeba było więc doczyścić mieszankę klasycznymi metodami. Najpierw usunięto magnez, wapń i inne berylowce poprzez wytrącenie w formie siarczanów lub szczawianów. Gdy tak oczyszczoną mieszankę, która powinna zawierać już tylko sód, potas i lit zbadano ponownie, dokładne obserwacje wykazały istnienie słabych linii emisyjnych, które nie pasowały do znanych pierwiastków. A skoro tak, to musiały zostać wyemitowane przez pierwiastek nieznany.
Równolegle Bunsen, badając minerały litu, które mogły być źródłem soli w źródle uzdrowiska, odkrył jedną z tych nowych linii w lepidolicie, rzadkim minerale zasadowym występującym w tej samej okolicy, co przy okazji potwierdzało przypuszczenia, że dwie jasne linie emisyjne należą do dwóch różnych pierwiastków. Zwracała zwłaszcza uwagę mocna, jasnoniebieska linia, która znajdowała się bardzo blisko miejsca w którym podobną emisję daje stront. Nie mógł to być jednak on, bo został wytrącony wraz z innymi berylowcami. Ze względu na podobną reaktywność bardziej prawdopodobne wydawało się, że jest to pierwiastek podobny do litowców, który ze względu na kolor tej linii nazwano cezem (od łacińskiego określenia błękitnego nieba). Inna jasna linia emisyjna miała kolor rubinowo-czerwony, zatem odpowiadający jej pierwiastek nazwano rubidem.

Przez kolejne miesiące badacze pozyskiwali z uzdrowiska kolejne galony wody mineralnej, odparowywali i przerabiali pozostałe sole, próbując znaleźć jakiś sprytny sposób oddzielenia od siebie pierwiastków. Każda partia była badana spektroskopowo aby po natężeniu linii emisyjnych poznać, czy specjacja się udała.
Pierwszym etapem było oczywiście wytrącanie berylowców jonami siarczanowymi lub szczawianowymi. Przesącz mieszano z kwasem azotowym i odparowywano, następnie osad przemywano bezwodnym alkoholem. Jak się okazuje, spośród metali alkalicznych w alkoholu praktycznie nierozpuszczalny jest azotan sodu a rozpuszczalne azotany innych metali. Z tak powstałej mieszanki, lit udało się oddzielić poprzez wytrącenie w formie węglanu. Powstała więc ostatecznie mieszanka soli potasu i nieznanych pierwiastków alkalicznych, na których istnienie wskazywało widmo.

Dla dalszego rozdziału chemicy zastosowali wyrafinowaną metodę. Najpierw znaleźli związek, w którym metale te są bardzo trudno rozpuszczalne. Był to kwas chloroplatynowy, otrzymywany przez rozpuszczenie platyny w wodzie królewskiej. Tworzył ze zmieszanymi metalami trudno rozpuszczalne sole. Spośród nich chloroplatynian potasu był nieco lepiej rozpuszczalny w gorącej wodzie, możliwy był zatem rozdział metodą krystalizacji frakcyjnej.
Jest to technika rozdziału oparta o różnice rozpuszczalności związków - jeśli w danych warunkach, w których z roztworu wypadają kryształy, pewien składnik mieszaniny jest lepiej rozpuszczalny a drugi gorzej, to w powstających kryształach więcej będzie tego drugiego, a w pozostałym roztworze więcej tego pierwszego. Kryształy rozpuszczamy i ponownie przeprowadzamy krystalizację - składnik lepiej rozpuszczalny zostaje w roztworze, gorzej rozpuszczalny zatęża się w kryształach. Nawet jeśli różnica rozpuszczalności jest niewielka, po odpowiednio dużej ilości powtarzanych krystalizacji, ostatecznie otrzymamy kryształy bardzo czystej substancji gorzej rozpuszczalnej, a z pozostałych roztworów będziemy mogli w podobny sposób odzyskać bardzo czystą substancję lepiej rozpuszczalną.

Tak więc po bardzo wielu cyklach krystalizacji, rozpuszczania, krystalizacji i rozpuszczania, chemicy oddzielili poszukiwane metale od potasu. Dalsza przeróbka okazała się dużo prostsza - zredukowali powstałą sól podwójną do metalicznej platyny i soli szukanych pierwiastków. Dla tych z kolei stwierdzono, że ich węglany, równie dobrze rozpuszczalne w wodzie, wyraźnie różnią się rozpuszczalnością w alkoholu. Możliwe stało się więc oddzielenie jednego od drugiego i zbadanie ich właściwości.

Po przerobieniu 44 000 litrów wody mineralnej, Bunsen i Kirchoff otrzymali 9,2g chlorku rubidu i 7,3g chlorku cezu. Łatwo zrozumieć jak ogromnie mozolna była to praca. Równolegle trwały prace nad przerobem pollucytu. Po przerobieniu "zaledwie" 150 kg minerału otrzymali 0,5 g chlorku rubidu.
Obaj chemicy próbowali otrzymać czyste pierwiastki. O ile dla rubidu udało się to poprzez pirolizę winianu, to dla cezu dopiero po dwudziestu latach udało się wyizolować metal przez elektrolizę z metaliczną rtęcią.
Srebrzysty rubid u góry i złotawy cez u dołu.

Zarówno cez jak i rubid są pierwiastkami ogromnie reaktywnymi. Z wodą reagują wybuchowo, wodorotlenek cezu jest bardzo silną zasadą, zdolną trawić szkło i krzem. Pierwiastki te znajdują się w pierwszej grupie układu okresowego, litowcach, u samego dołu, co ma związek z własnościami.
Jedną z właściwości pierwiastków, które wpływają na reaktywność, jest elektroujemność, czyli pewna względna miara skłonności do przyciągania elektronów w związkach. Im silniej atom przyciąga elektrony, tym chętniej tworzy aniony. Wysoką wartość elektroujemności wykazują niemetale, które rzadko występują w formie kationów.
Na przeciwnym biegunie są metale alkaliczne, o bardzo niskiej elektroujemności. W związkach z innymi pierwiastkami jest znacznie więcej szans na to, że przyjmą formę kationu. Im niższa jest elektroujemność, tym silniejsza jest reaktywność w kontaktach z innymi substancjami. Cez i Rubid posiadają najniższe elektroujemności spośród pierwiastków (jeszcze mniejszą ma leżący pod nimi Frans, ale ten jest nietrwały), chętnie więc oddają elektrony i to powoduje, że są aż tak aktywne. Po prostu większość substancji i pierwiastków przyjmuje elektrony silniej, niż metale te są w stanie je zatrzymywać, z czym się więc nie zetkną, zachodzić będzie reakcja redukcji.

Właściwość ta znalazła zresztą zastosowanie - cez i rubid były i czasem nadal są używane jako pochłaniacze tlenu w niektórych urządzeniach, na przykład lampach elektronowych, jako tzw. "gettery". Umieszczone w bańce z próżnią, po podgrzaniu odparowują i reagują z tlenem, dwutlenkiem węgla a nawet azotem. Zwykle mają postać lustra napylonego od środka na szkło lub pętelki stopu, z której po pierwszym włączeniu urządzenia parują.
Cez, jak na pierwiastek alkaliczny, którego sole są łatwo rozpuszczalne w wodzie, jest też pierwiastkiem bardzo ciężkim. Ma masę atomową 132,9 u.  Z tego powodu stosunkowo dobrze rozpuszczalna sól octan cezu ma najwyższą rozpuszczalność wagową spośród prostych soli - w 100g wody może się rozpuścić 1010g.[s] Oznacza to, że w jednej szklance wody rozpuszczą się ponad dwa kilogramy.
Przekłada się to na wysoką gęstość roztworu, dochodzącą do 2,2 g/cm3. Mrówczan cezu, którego nasycony roztwór ma gęstość 2,5 g/cm3, jest używany jako składnik płuczek do odwiertów. Wypełnienie odwiertu cieczą o dużej gęstości powoduje powstanie na dnie ciśnienia, które powstrzymuje wyrzut podziemnej wody, ropy czy gazu, które w przeciwnym razie mogłyby wytrysnąć z otworu, uszkadzając wiertnię.

 Duża wielkość jonów tych metali powoduje, że nie pasują one do sieci krystalicznych wielu minerałów, trudno więc włączają się jako domieszki do pospolitych soli kamiennych czy skaleni potasowych. W procesach wulkanicznych oraz hydrotermalnych, zawarte w zasadowej magmie pierwiastki pozostają w ostatnich płynnych resztkach, po tym jak inne utworzyły już kryształy, więznące w coraz bardziej lepiej masie. Krystalizują ostatecznie jako składniki pegmatytów, skał charakteryzujących się obecnością dużych, zauważalnych kryształów. Minerałem najzasobniejszym w cez jest Pollucyt. Rubid stanowi częstą domieszkę w Lepidoicie.
*  *  *

Oczywiście od czasu Bunsena spektroskopia płomieniowa nadal się rozwijała. Odkryto dzięki niej wiele nowych pierwiastków, udało się za jej pomocą zbadać przebieg szybkich reakcji chemicznych oraz ustalić skład wszechświata. Jeszcze wiele razy będę wracał do tematu.
W najbardziej klasycznej formie badania świecenia płomienia, w który wprowadzono próbkę, znalazła spektroskopia ciekawe zastosowanie analityczne, w technice ASA. W tej technice próbkę rozpuszcza się w wodzie, z której niewielką porcję wprowadza się do płomienia. Płomień zaczyna świecić światłem zawartych w próbce pierwiastków. Teraz oświetla się go światłem emitowanym przez pary czystych pierwiastków w podłączonej pod prąd rurce próżniowej.
Jak to było tłumaczone przy wyjaśnieniu ciemnych linii widmowych, naświetlenie płomienia światłem o takiej długości, że niesiona przez nie energia umożliwia przeskok energetyczny, powoduje osłabienie tej długości fali w świetle przechodzącym. Jeśli ogień z parami różnych pierwiastków naświetlimy światłem emitowanym przez jeden z nich, to osłabienie światła przechodzącego będzie wywoływane tylko przez ten pierwiastek. A wielkość tego osłabienia będzie proporcjonalna do stężenia par w płomieniu.
W ten sposób można bardzo dokładnie oznaczyć ilościowo niemal wszystkie pierwiastki - pod warunkiem jednakże posiadania tylu lamp jarzeniowych z parami pierwiastków.
---------------
*  Kirchhoff, G.; Bunsen, R. (1861). "Chemische Analyse durch Spectralbeobachtungen". Annalen der Physik und Chemie. 189 (7): 337–381
 * https://en.wikipedia.org/wiki/Rubidium
*  http://pubs.acs.org/cen/80th/print/rubidium.html
* http://pau.krakow.pl/PKHN-PAU/pkhn-pau-XI-2012-11.pdf

[s]  https://www.spectrumchemical.com/MSDS/3454C.PDF



czwartek, 12 kwietnia 2018

Spóźnione pierwiastki

Wiemy z pewnością, że w dawnych czasach nowe pierwiastki znajdowano po prostu w naturze, wyodrębniając je z minerałów. Oraz, że po pewnym czasie się nam skończyły i zaczęliśmy sztucznie otrzymywać nowe, nietrwałe. Kiedy jednak nastąpiło to przejście? Jaki występujący w naturze pierwiastek był tak rzadki i nieuchwytny, że odkryto go na samym końcu?
Jedna ze starych wersji tablicy Mendelejewa

Złotym okresem odkryć pierwiastków był zdecydowanie XIX wiek, czas gdy rozwój chemii poszedł ostro do przodu, zaś kolejne pokolenia ciekawskich badaczy wsadzały do próbówek co tylko wpadło im w oko. O ile do końca XVIII wieku znano około 34 pierwiastki (chlor, odkryty w 1784 przez Scheelego początkowo uznawano za bardzo trwały tlenek) to do końca XIX wieku odkryto już 49. Natomiast lista naturalnych pierwiastków w wieku XX jest bardzo krótka.

89
Wiek otwiera pierwiastek Aktyn, którego historia była nieco skomplikowana. Nieco wcześniej, w 1899 roku chemik Andree Louis Debierne korzystając z materiałów otrzymanych z blendy smolistej, które zostały małżonkom Curie po wyizolowaniu Radu i Polonu, uzyskał z nich wysoce radioaktywną sól nieznanego pierwiastka. Ogłosił odkrycie, nadając mu nazwę aktyn, był bowiem radio-aktywny.
Świecące pod wpływem własnej promieniotwórczości sole aktynu
Następnie w roku 1902 Friedrich Oscar Giesel zajmując się przeróbką tejże rudy uranu, uzyskał sól bardzo radioaktywnego pierwiastka, który nazwał Emanium, bowiem próbki świeciły w ciemnościach. Gdy minęło parę lat, chemicy uznali, że najprawdopodobniej oba pierwiastki są jednym, w związku z czym pierwszeństwo odkrycia i nazwa przypadły Debierne.
Dopiero w latach 70. chemicy przyjrzeli się uważniej pierwszym doniesieniom. Aktyn Dobiernera opisany w pierwszych artykułach, miał jednak mimo wszystko inne właściwości, niż ten wyizolowany później i poddany dalszym badaniom. Po przeanalizowaniu metody otrzymania uznano, że jednak to Giesel miał rację i to on był odkrywcą pierwiastka. Nazwy jednak nie zmieniono z powrotem na Emanium, bo minęło już kilka dekad i za dużo było zmieniania.[1]

71
Lutet był jednym z ostatnich lantanowców. Jest to grupa pierwiastków, zwykle na tablicach wyrzucana pod resztę pierwiastków, ze względu na właściwości chemiczne niezwykle podobne w jej obrębie. To podobieństwo było zresztą przyczyną problemów w izolacji. Co chwila okazywało się, że zgłoszony nowy lantanowiec w rzeczywistości jest mieszanką dwóch różnych, zaś któryś z tych po wyizolowaniu i zgłoszeniu, ponownie okazywał się mieszaniną. Na końcu takiego ciągu znalazł się lutet.
Zaczęło się od badania minerałów tzw. "ziem rzadkich" nazwanych od nieczęstego występowania. Fiński mineralog John Gadolin w kopalni koło szwedzkiej wioski Ytterby odnalazł minerał, z którego wydzielił tlenek nieznanego pierwiastka. Od nazwy miejsca z którego pochodził, nazwano go Yttrium, czyli po polsku itr. Następnie po kilku dekadach jego kolega po fachu Carl Mossander odkrył, że itr zawiera domieszkę dwóch innych, podobnych pierwiastków, którym nadał niewymyślne nazwy urobione z podziału na sylaby tej pierwotnej - terb i erb. Po kolejnych dekadach Szwajcar de Marignac odkrył, że z kolei erb też nie jest czysty i wydzielił z niego kolejny pierwiastek. Będąc wierny tradycji nadał mu łudząco podobną nazwę Ytterbium, czyli itreb. Jak łatwo się domyśleć, działalność tych panów przyprawia o ból głowy studentów chemii nieorganicznej, którym wszystkie te nazwy się mylą. Natomiast mała szwedzka wioska może się pochwalić tym, że od niej nazwano aż cztery pierwiastki.
Tlenki kilku lantanowców, tzw "zemie rzadkie"

W międzyczasie okazało się, że erb zawiera jeszcze domieszkę holmu i tulu, potem, że holm zawiera w sobie dysproz, a znany od dawna didym to mieszanka neodymu i prazeodymu. Gdy na swoje miejsce wskoczyły jeszcze gadolin, samar i europ, w tak uformowanej grupie pozostały tylko dwie irytujące dziury - pierwiastek 61 i pierwiastek 71.

Dla badaczy dość oczywistym pomysłem było szukanie wśród już znanych i wydzielonych pierwiastków. A nuż któryś okaże się mieszanką. Wreszcie w 1907 roku na trop tej samej substancji wpadli równocześnie trzej badacze - Francuz Gregore Urbain i Austriak Carl Auer von Welsbach i Amerykanin Charles James. Ten ostatni opublikował doniesienie dość późno, i nie sposób było mu stawać w szranki w boju o pierwszeństwo, natomiast pozostali panowie wszczęli kłótnię.
Urbain zaproponował dla pierwiastka nowo wydzielonego i dla oczyszczonego itrebu nazwy lutet - od zlatynizowanej nazwy regionu we Francji - i neoitreb; von Welsbach zaproponował cassiuopeium i abldebaranium, od nazw obiektów astronomicznych. Ponieważ pierwiastek nie może posiadać  różnych nazw, trzeba było w końcu coś ustalić. W 1909 roku komisja zajmująca się ustalaniem dokładnej masy atomowej pierwiastków rozstrzygnęła spór, uznając że Urbain doniósł o wydzieleniu nowego pierwiastka o miesiąc wcześniej, był zatem pierwszy i może nadać pierwiastkowi nazwę.
Mimo to jeszcze do lat 50. w krajach niemieckojęzycznych używano nazwy Cassiopeium i symbolu Cp. [2]


75
Gdy losy nazwy pierwiastka 71 jeszcze się ważyły, rozpoczynało się podobne zamieszanie z pierwiastkiem 75.
Po odkryciu metody wyznaczania prawdziwej liczby atomowej i uporządkowaniu pierwiastków (zamieniono kolejnością potas i argon, które ułożone wedle masy atomowej nie bardzo pasowały do grup) okazało się, że w grupie platynowców lekkich jest jeszcze jeden pierwiastek nieodkryty. Różne grupy chemików zaczęły więc badać spektroskopowo rudy platyny.
W 1925 roku małżeństwo niemieckich chemików Ida i Otto Noddack ogłosiło wykrycie metodą spektroskopii rentgenowskiej śladów nowego pierwiastka w rudach platyny i minerale kolumbicie. Wraz z współpracownikiem Otto Bergiem wyizolowali 1 g soli tego pierwiastka, po przerobieniu 600 kg kolumbitu. Nazwali go renem, od nazwy rzeki na granicy francusko-niemieckiej.
W późniejszych badaniach ten sam zespół ogłosił wykrycie śladów pierwiastka 43, którego też brakowało w układzie okresowym, proponując dla niego nazwę Masurium, dość zresztą kontrowersyjną (pochodzi od latynizacji nazwy Mazur i w uzasadnieniu miała upamiętniać rdzennie niemiecki region). Tego wyniku nie udało się jednak powtórzyć innym badaczom.

Następnie minęło kilka dekad gdy pojawiło się doniesienie, że nawet w przypadku renu zostali uprzedzeni. W 1909 roku japoński badacz Masataka Ogawa ogłosił wykrycie pierwiastka 43 w thorianicie. Wyizolował niewielką próbkę i nazwał odkryty pierwiastek Nipponium, od jednej z nazw Japonii. Późniejsi badacze z innych krajów nie mogli powtórzyć tego odkrycia, więc nie zostało ono uznane. Dopiero w naszych czasach powrócono do oceny jego dzieł. Po przeanalizowaniu oryginalnych zdjęć z zapisem widma rentgenowskiego Nipponium stwierdzono, że wprawdzie nie zawierały pierwiastka 43, ale mogły zawierać ren, co oznaczałoby, że to Ogawa jest odkrywcą tego pierwiastka mimo błędnego przypisania. Stąd różne źródła uznają za odkrywcę renu albo Ogawę, albo Noddacków albo całą trójkę bez wdawania się w spory.[3]

72
W międzyczasie doszło natomiast do odkrycia pierwiastka 72. Pierwsze zgłoszenie w tej sprawie opublikował znany już nam Urbain przy okazji prac nad oczyszczaniem lantanowców, wydawało się bowiem, że szukany element należy do tej grupy. Ogłoszony w 1911 pierwiastek nazwał Celtium, lecz ponownie nie udało się tego odkrycia potwierdzić innymi metodami. W dużo późniejszym czasie, w związku ze sporami o pierwszeństwo, przebadano spektroskopowo próbki Urbaina, nie znajdując w nich pierwiastka 72.
Próbki metalicznego hafnu pokrytego warstewką tlenków

W 1923 roku pracujący w Kopenhadze fizyk Niels Bohr zasugerował, że z praw okresowości można wywnioskować podobieństwo chemiczne pierwiastka 72 do znanego już cyrkonu, w związku z czym lepiej szukać w jego rudach. Sugestię podłapali chemicy Georg von Hevesy i Dirck Costler. Zbadali oni cyrkon pochodzący z norweskich rud i metodą spektroskopii rentgenowskiej wykazali ślady szukanego pierwiastka. Przy pomocy mozolnej krystalizacji frakcyjnej udało się oddzielić małą próbkę soli nowego pierwiastka. Od zlatynizowanej nazwy Kopenhagi, nazwano go hafnem.
Uznając pierwszeństwo Ogawy w odkryciu renu, hafn okazuje się ostatnim trwałym pierwiastkiem wyizolowanym z próbek naturalnych. Ale nie ostatnim w tym artykule.[4]

91
Istnienie jeszcze jednego pierwiastka między thorem i uranem było przewidywane jeszcze przez Mendelejewa. Ponieważ grupa Aktynowców nie była wtedy uznawana za odrębną, bo znano z niej tylko 2 pierwiastki, brakujący pod numerem 91 był uznawany za podobny do tantalu i w jego rudach go poszukiwano. Dlatego też wszyscy przeoczyli doniesienie Williama Crookesa, który w 1900 roku opisał wyizolowanie z soli uranu substancji, nazwanej przez niego uranem X. On sam nie opisał jej jako pierwiastka, sądził, że to raczej jakaś forma uranu nieco bardziej od niego promieniotwórcza. Na podstawie późniejszych analiz uznano, że uzyskał wtedy mieszankę thoru z pierwiastkiem 91, której dalej nie rozdzielał.
W 1913 roku Kazimierz Fajans i Oswald Göhring wyizolowali szukany pierwiastek badając produkty rozkładu promieniotwórczego uranu. Nazwali go brevium, czyli "krótkotrwały" ocenili bowiem jego czas półtrwania na zaledwie 6 godzin. Następnie w 1917 roku grupa Otto Hanna i Lisie Meitner wyizolowała z rud uranu długożyjący izotop nazwany przez nich protaktynem, bowiem rozpadał się do aktynu. W podobnym czasie na ślad pierwiastka wpadł jeszcze John Cranston, ale nie mógł opublikować odkrycia, bo powołano go na wojnę.
Protaktyn jest błyszczącym, złotawym metalem

Zawikłany węzeł odkryć przecięła dopiero po drugiej wojnie światowej IUPAC, uznając prawo do nazwania pierwiastka dla Hanna i Meitner, ponieważ wyizolowali oni izotop o najdłuższym okresie półtrwania. Historycy nauki w związku z tym jako odkrywców uznają albo Hanna i Meitner, albo całą czwórkę z Fajansem i Goeringiem.[5]

87
Dziura w układzie okresowym na miejscu 43 została załatana sztucznie, gdy w 1934 roku bombardując neutronami molibden otrzymano technet. Dziura w miejscu 61 została załatana sztucznie wraz z otrzymaniem prometu, tymczasem tuż przed wybuchem II wojny światowej francuskiej chemiczce udało się wyizolować ostatni wyodrębniony ze źródeł naturalnych pierwiastek.
Uczennica Marii Curie Skłodowskiej, chemiczka Marguerite Perey, zajmowała się głównie pracą nad izolowaniem i oczyszczaniem aktynu z próbek lantanowców.
 Pod koniec lat 30, przy pomocy precyzyjnych badań aktywności wykazała, że część próbek aktynu jest silniej promieniotwórcza od innych a zakres energii emitowanych cząstek nie pasował do izotopów aktynu. Wniosek, że zawiera dodatek czegoś silniej radioaktywnego nasuwał się sam, zwłaszcza w takiej pracowni. Wprawdzie badana substancja rozpadała się bardzo szybko, ale badając aktywność różnych roztworów, którymi przemywano próbki aktynu stwierdziła, że jest to pierwiastek o właściwościach litowców, czyli poszukiwany od dawna eka-cez.
Perey ogłosiła wyniki w 1939 roku, proponując nazwę catium i symbol Cm, w nawiązaniu do przewidywanej własności najwyższej elektrododatności. Kilka lat później jej przełożona Irena Juliot-Curie zgłosiła zastrzeżenia do takiej nazwy. Zaproponowany skrót zbiegł się ze skrótem proponowanym dla sztucznego pierwiastka kiuru, nazwanego zresztą na cześć jej matki. Ponadto anglojęzycznym chemikom catium kojarzyło się z kotami. Dość, że Perrey zaproponowała ostatecznie zmianę nazwy na francium, czyli frans, od nazwy swojego kraju i ta propozycja została w końcu zaakceptowana.[6]
300 tysięcy atomów fransu w pułapce magnetycznej


Był to ostatni pierwiastek, którego odkrywcy izolowali ze źródeł naturalnych. Było co prawda kilka, które otrzymano sztucznie a potem odkryto w śladowych ilościach w naturze, ale to już nie to samo.
---------
* C Fry, M Thoennessen, Discovery of the Actimium, Thoriom, Protactinium and Uranium Izotopes

[1] https://en.wikipedia.org/wiki/Actinium
[2] https://en.wikipedia.org/wiki/Lutetium
[3] https://en.wikipedia.org/wiki/Rhenium
[4] https://en.wikipedia.org/wiki/Hafnium
[5] https://en.wikipedia.org/wiki/Protactinium
[6] https://en.wikipedia.org/wiki/Francium



niedziela, 30 października 2016

Dlaczego osm jest najgęstszym pierwiastkiem?

Witam po dłuższej przerwie.

Jak to mamy możliwość obserwować na co dzień, substancje i materiały różnią się między sobą między innymi tym, że podobnej wielkości kawałki mają różny ciężar. Klocki drewna rzucone na wodę pływają łatwo, bryły lodu wynurzają nad powierzchnię tylko końcówki a kamień tonie. Miarą tej właściwości jest gęstość, czyli masa mieszcząca się w danej objętości. Na gęstość wpływają różne cechy, na przykład porowatość potrafiąca znacznie zmniejszyć gęstość materiału (niektóre aerożele są niemal tak lekkie jak powietrze), zawartość wody, ale w większym stopniu rodzaj substancji.

Najgęstszym materiałem na ziemi jest metaliczny osm, metal szlachetny podobny do platyny. Jego gęstość to ok. 22,65 g/cm3, co oznacza, że kostka o boku 10 cm waży 22,5 kg. Jest dwa razy gęstszy od ołowiu, który już jest uważany za bardzo ciężki. Gęstością dorównuje mu tylko iryd (niektóre pomiary pokazują nawet nieco większą gęstość irydu ale to już zależy od sposobu pomiaru). W związku z tym rodzi się oczywiste pytanie - dlaczego osm jest aż tak ciężki?

Jedną z oczywistych przyczyn, jest jego wysoka masa atomowa - 190,23 u. Jego atomy są więc ciężkie i ta sama ich ilość waży więcej niż dla wielu innych metali. Jednakowoż nie jest osm wcale najcięższym pierwiastkiem, większą masę atomową (207 u) ma choćby ołów, który ma przecież dwa razy mniejszą gęstość

Kolejnym czynnikiem warunkującym jest promień atomowy, czyli wielkość atomu liczona do ostatniej powłoki elektronowej. Im mniejsze są atomy tym więcej może się ich zmieścić w tej samej objętości. W układzie okresowym dają się zauważyć dwie ogólne reguły wielkości atomów - pierwsza jest dość oczywista - w dół wielkość atomów rośnie, mają bowiem coraz bardziej dodatnie jądro, coraz większą ilość elektronów a w związku z regułami ich upakowania w przestrzeni, coraz więcej sięgających dalej powłok na których mogą się pomieścić.
 Druga jest natomiast mniej intuicyjna - wzdłuż okresu, od lewej do prawej, atomy się zmniejszają, mimo że krąży wokół nich coraz więcej elektronów. Wynika to stąd, że w okresie nie przybywają nowe zewnętrzne powłoki elektronowe, a elektrony zapełniają jedynie odpowiednie dla danego bloku podpowłoki, najpierw s, potem p, a dla cięższych pierwiastków też d i f. Natomiast ze wzrostem masy jądra rośnie ładunek przyciągający elektrony, co zmniejsza całkowitą średnicę atomu.
 Efekt ten najwyraźniejszy jest w górnych okresach. W dolnych okresach zmniejszanie się średnic atomów jest nawet większe niż by to wynikało z samego zwiększenia ładunku jądra. Tłumaczy się to bardzo słabym osłanianiem ładunku jądra przez orbital f, przez co najbardziej zewnętrzne elektrony czują przyciąganie nieco silniej.

Osm znajduje się w najniższym okresie z trwałymi pierwiastkami, mając w sobie także słabo ekranujący orbital f, jest zatem bardzo masywnym atomem, którego średnica nie jest tak duża jak to by można oczekiwać. Tyle tylko, że jeszcze mniejsze atomy ma wspomniany ołów, więc musi tu dokładać się jeszcze dodatkowy efekt.

Metale w stanie stałym nie stanowią po prostu atomów ułożonych jeden obok drugiego. Są połączone wiązaniami poprzez uwspólnione elektrony, związane na tyle słabo. że przeskakują z atomu na atom, tworząc zdezorganizowany "gaz elektronowy". To dzięki nim metale przewodzą prąd i ciepło, oraz dobrze odbijają światło. Połączenie dwóch atomów wiązaniem przybliża je do siebie, i to tym bardziej im większa jest energia tego wiązania. Na to więc jak dużo masy możemy zmieścić w objętości, będzie wpływała długość wiązania metalicznego.
Osm znajduje się w układzie okresowym w bloku D, co oznacza że zewnętrzne elektrony walencyjne pochodzą z orbitalu d mieszczącego 10 elektronów w 5 powiązanych parach. Podczas tworzenia wiązań z innymi atomami w metalu tworzą się orbitale molekularne, na które wchodzą elektrony, odchodząc od stanu podstawowego. W kolejnych, coraz cięższych atomach, na orbital molekularny wchodzi coraz więcej elektronów, przez co wzrasta uśredniona siła wiązania. Jednak po minięciu połowy pojemności orbitalu, w cięższych atomach elektrony zaczynają tworzyć pary co zmniejsza ich zdolność do wiązania. W efekcie najsilniej związane są atomy w metalach leżących w połowie bloku D a najsłabiej te leżące na początku i końcu. Silniej związane atomy leżą bliżej siebie i więcej się ich zmieści w danej objętości.
Miarą tych oddziaływań jest energia kohezji, która wzrasta w dół grupy i do środka bloku. Największą energię kohezji ma wolfram, zaraz za nim tantal, ren, osm i iryd, potem energia dość szybko spada. Przekłada się to wprost na temperatury topnienia i wrzenia - najtrudniej topliwym metalem jest wolfram, po nim ren, tantal i osm.

Podsumowując
Spróbujmy więc podsumować wszystkie efekty - osm leży w dość daleko w układzie okresowym i ma wysoką masę atomową, ale ze względu na wysoki ładunek jądra wielkość jego atomów nie jest tak duża. Znajduje w najniższym okresie z trwałymi pierwiastkami i tuż za środkiem bloku D, co przekłada się na wysoką energię kohezji i krótkie wiązania metaliczne. W związku z tym w danej objętości zmieścić się może dużo jego masywnych atomów. Wprawdzie są pierwiastki o większej od niego energii kohezji, ale po pierwsze o nieco mniejszej masie atomowej a po drugie o nieco większej średnicy atomów w stanie podstawowym. Są też pierwiastki o dużo mniejszych atomach i większej masie, ale wyraźnie mniejszej energii kohezji.
Po prostu trzy funkcje regulujące gęstość pierwiastków przebiegają tak, że ich suma osiąga minimum dla tego pierwiastka. Dla któregoś musiało się trafić. Ze względnie dużej, mimo pewnego spadku, energii kohezji korzysta jeszcze iryd, który jest drugim najgęstszym pierwiastkiem.

Czy to już koniec? Nie stworzymy jeszcze gęstszych materiałów? Cóż, sztucznie otrzymaliśmy jeszcze cięższe pierwiastki, uzupełniające 7 okres. Jeśli powyższe prawa stosują się do nich tak samo, to pierwiastki pośrodku okresu powinny być bardzo ciężkie i z wysoką energią kohezji. Teoretyczne obliczenia pokazują, że metaliczny has (Hs) o liczbie atomowej 108, który leży w układzie okresowym pod osmem, powinien mieć gęstość 41 g/cm3, a więc dwa razy większą. Jednak ze względu na bardzo krótki okres półtrwania, wynoszący około minuty dla najtrwalszych izotopów, zmierzenie tego bezpośrednio jest niemożliwe.

ed.
Gęstość metali rośnie wraz ze spadkiem temperatury. Dla irydu współczynnik objętościowej kurczliwości temperaturowej jest nieco większy niż dla osmu, a ponieważ ich gęstości są zbliżone pojawiają się przypuszczenia, że w bardzo niskich temperaturach, rzędu 50 K iryd może jednak wyprzedzać osm.[1] Pomiar gęstości w tak niskich temperaturach jest jednak nieco kłopotliwy i nie wiele było takich badań a teoretyczne wartości na tyle się zbliżają, że różnica staje się mniejsza niż granica błędu. Kto wie, może jednak przy dokładniejszych badaniach okaże się, że osm jest najgęstszy tylko w pewnym zakresie temperatur?
------------
[1]  John W. Arblaster, Is Osmium Always the Densest Metal?, Johnson Matthey Technol. Rev., 2014, 58, (3), 137 doi:10.1595/147106714x682337

*  https://en.wikipedia.org/wiki/Lanthanide_contraction
* https://en.wikibooks.org/wiki/Introduction_to_Inorganic_Chemistry/Metals_and_Alloys:_Structure,_Bonding,_Electronic_and_Magnetic_Properties
* https://www.itp.tu-berlin.de/fileadmin/a3233/upload/SS12/TheoFest2012/Kapitel/Chapter_6.pdf
http://pubs.acs.org/doi/pdf/10.1021/ct500532v

środa, 13 lipca 2016

Chemiczne wieści (7.)

Bateria z jajka
Każdy kto często spożywa jajecznicę wie, że skorupki są odpadem nieco kłopotliwym. Od wewnętrznej strony skorupka jest pokryta białkową błoną. Białko to chętnie gnije po wyrzuceniu do kosza i dorzuca do woni śmieci specyficzny, zgniłojajeczny aromat. Fakt ten jest też zresztą przeszkodą w przetwarzaniu odpadowych skorupek - zarówno przy przerabianiu na suplement diety jak i na dodatek wapnujący do gleby należy oddzielać błonkę, zwykle za pomocą odpowiednich chemikaliów.

Chemicy z Wayne State University w Detroit znaleźli natomiast sposób jak wykorzystać nieoczyszczoną skorupkę do syntezy materiału na elektrody do baterii litowych.


Metoda jest bardzo prosta - nie rozgniecioną skorupkę z jajka umieścili w naczyniu z roztworem wodorotlenku sodu, do środka skorupki dodali natomiast roztwór soli kobaltu. Skorupka posłużyła tu za porowatą, półprzepuszczalną przegrodę, przez którą powoli do wnętrza dyfundowały aniony hydroksylowe OH-. Na podściełającej skorupkę błonie wytrącała się warstewka amorficznego wodorotlenku kobaltu pokrywająca włókna białka.
Po czterech dniach skorupkę wyjęto i wysuszono, po czym już suchą poddano wyprażaniu bez dostępu powietrza w temperaturze 650 stopni. Włókna białkowe uległy wówczas zwęgleniu uwalniając siarkę, która reagowała z kobaltem, tworząc nanopręty siarczku kobaltu osadzone na włóknach węglowych.
Materiał ten może być potem przetworzony na porowatą elektrodę w pewnym typie baterii jonowych, chociaż nie znalazłem w pracy oryginalnej szczegółów na temat oddzielania włókien od skorupki.

Autorzy spekulują, że metoda mogłaby być zastosowana dla wykorzystania skorupek jaj rozbijanych maszynowo, gdzie jest to raczej odsysanie zawartości niż rozbicie, toteż po procesie zostają skorupki w dużym stopni całe.[a]

Imiona nowych pierwiastków
Zaledwie w styczniu oficjalnie uznano istnienie czterech nowych pierwiastków (o czym już pisałem) a już pojawiają się bardziej konkretne propozycje nazw. Grupy badaczy uznane za odkrywców mogą zgłosić własne propozycje nazw, które będą potem brane pod uwagę podczas podejmowania decyzji. Mogą być to nazwy odnoszące się do mitologii, do miejscowości lub minerałów, krajów lub regionów, charakterystycznej własciwosci pierwiastka lub honorujące jakiegoś znanego naukowca. Wedle tych zasad zespoły odkrywców zaproponowały:

- Zespół Riken z Japonii, uznany za odkrywców pierwiastka 113, proponuje nazwę "Nihonium" (Nh) od słowa "nihon" będącego jedną z dwóch nazw Japonii w języku japońskim.

- Zespół z Dubnej w Rosji który odkrył pierwiastek 115 proponuje nazwę "Moscovium) (Mv) od zlatynizowanej nazwy Moskwy.

- Ponieważ zarówno pierwiastek 115 i 117 odkryty został w ramach współpracy ośrodków w Dubnej w Rosji i w Oak Ridge w USA, dla tego drugiego zaproponowano nazwę Tennessine (Tn) od nazwy stanu w którym znajduje się kilka ośrodków badań jądrowych

- Pierwiastek 118 odkryto w ramach współpracy ośrodka w Dubnej i w Berkley, a jako nazwę zaproponowano Oganesson dla uczczenia profesora Jurija Oganessaja, pioniera badań nad poszukiwaniami transuranowców.

Jeśli nazwy zostałyby przyjęte przez IUPAC, to prawdopodobnie zostałyby spolszczone do "nihon", "moskow", "tennesyn" i "oganess". Nie brzmi to zbyt dobrze.[b]

Wystarczy jeden atom
Platyna od dawna znana jest ze swych świetnych właściwości katalitycznych i jest na dużą skalę używana w przemyśle, ale też na przykład jako składnik katalizatorów samochodowych. Poza łatwością zatruwania od pewnych domieszek ma platyna pewną istotną wadę - jest droga. Dlatego też chemicy od dawna starają się jak mogą zmniejszać jej ilość w katalizatorze przy zachowaniu zdolności do przyspieszania reakcji. W zasadzie nie używa się już czerni platynowej to jest jej bardzo drobnych cząstek, lecz raczej różnych materiałów porowatych pokrytych drobnymi ilościami platyny na powierzchni.
Ostatnia praca badaczy z Singapuru pokazuje, że można pójść jeszcze dalej.

Zastosowany przez nich katalizator składał się głownie z porowatego węgla na którego powierzchni osadzono klastry kwasu polifosforanomolibdenowego z przyłączonym jednym atomem platyny (PMo12O403−) Pt . Z jego użyciem możliwe było przeprowadzenie reakcji uwodorniania takich związków jak nitrobenzen, cykloheksanon czy styren, z nienajgorszymi wydajnościami (30-40%) przy stosunkach ilości platyny do substratu od 1:100 do 1:2000, a przy przedłużeniu czasu reakcji udało się nawet niemal całkowicie uwodornić substrakt przy stosunku 1:8000. [c]

------------
[a] X. Meng and Da Deng. Trash to Treasure: Waste Eggshells Used as Reactor and Template for Synthesis of Co9S8 Nanorod Arrays on Carbon Fibers for Energy Storage. Chem. Mater., 2016, 28 (11), pp 3897–3904 DOI: 10.1021/acs.chemmater.6b01142
[b]  http://iupac.org/iupac-is-naming-the-four-new-elements-nihonium-moscovium-tennessine-and-oganesson/
[c] B. Zhang et.al. Stabilizing a Platinum1 Single-Atom Catalyst on Supported Phosphomolybdic Acid without Compromising Hydrogenation Activity, Angew. Chem. Int Ed. Volume 55, Issue 29
July 11, 2016 Pages 8319–8323


poniedziałek, 15 lutego 2016

Chemiczne wieści (4.)

Asfalt który sam się soli
Jak to po raz kolejny przekonaliśmy się w tym roku, drogowcy zawsze są zaskakiwani zimą. Niech tylko mocniej sypnie a okaże się, że pługosolarki gdzieś utknęły po drodze a powrót do domu staje się mocno utrudniony. Na ciekawy pomysł aby rozwiązać ten problem i przyspieszyć odladzanie dróg wpadli inżynierowie z Turcji - postanowili dodać sól do asfaltu.

Mrówczan potasu - sól stosowaną do odladzania w bardzo niskich temperaturach, uważany za substancję mniej szkodliwą dla środowiska od zwykłej soli - zmieszano z polimerem styrenowo-butadienowo-styrenowym, otrzymując żel w którym drobne cząstki soli zostały otoczone polimerem. Taki granulat połączono z masą bitumiczną będącą głównym składnikiem asfaltu drogowego. Następnie badano utrzymywanie się lodu i śniegu na powierzchni pokrytej testową mieszanką. Stwierdzono istotne opóźnienie pojawiania się oblodzenia i warstwy śliskiego śniegu, zarazem uwalnianie soli z materiału było dosyć niskie, rzędu 1-10% w ciągu 67 dni testu.[1]

Rozwiązanie to wydaje się jednak wiązać z problemami, podobnymi co solenie dróg z wierzchu - migracja uwalnianych soli wewnątrz mieszanki asfaltowej i krystalizacja w szczelinach może pogarszać wytrzymałość materiału. W dodatku sól będzie się zapewne uwalniała nie tylko w sezonie zimowym ale też podczas każdego deszczu, co spowoduje, że szybko wypłucze się cała i wzbogaci w sód glebę wokół drogi. Tak że niekoniecznie jest to udany pomysł.

Białkowe LEDy
Diody LED zrobiły w ostatnich latach wielką karierę w technice oświetleniowej. Będąc układami półprzewodników w których światło powstaje nie w wyniku żarzenia się jak w żarówkach, lecz podczas rekombinacji elektronów przewodnika z dziurami elektronowymi półprzewodnika typu p, osiągają większa sprawność energetyczną, i zużywają mniej prądu na wytworzenie tej samej ilości światła. Zarazem jednak są urządzeniami dosyć drogimi, na co składa się między innymi koszt wytworzenia dobrej jakości półprzewodników z tak egzotycznych materiałów jak domieszkowany arsenek galu. Tym bardziej, że jeden rodzaj półprzewodnika wytwarza światło w jednym kolorze, aby otrzymać światło białe zdatne do oświetlenia należy więc użyć przynajmniej trzech półprzewodników upakowanych jeden obok drugiego, tak aby ich zmieszane kolory tworzyły wrażenie światła białego. Podraża to koszty produkcji i zwiększa ilość pierwiastków zawartych w produkcie. Może się to jednak zmienić, jeśli do produkcji zostaną wprowadzone diody białkowe.


@ M. D. Weber/University of Erlangen-Nuremberg
Zespół hiszpańsko-niemieckich technologów wykorzystał znane w biologii białka fluorescencyjne i zmieszał je z tworzywem sztucznym, tworząc masę o konsystencji gumy. Masa ta świeci na różne kolory pod wpływem niebieskiego światła. Wystarczy więc użyć we właściwej diodzie jedynie półprzewodnik świecący na niebiesko i dodać do niego warstwy białkowych gum zielonych i czerwonych, aby otrzymać białe światło.
Zmniejsza to zapotrzebowanie na rzadkie pierwiastki i potencjalnie zmniejsza koszty produkcji.[2]

Dobry chrom zamienia się w zły
Jak to już było na tym blogu wielokrotnie wspominane, ta sama substancja może być zarówno korzystna jak i trująca, przy czym zazwyczaj zależy to od dawki. Wiele metali w niewielkich ilościach jest potrzebnych dla organizmu, zaś w zbyt dużych stają się truciznami. Szczególnym przypadkiem jest chrom, którego oddziaływanie na organizm zależy też od stopnia utlenienia. Nisko utlenione sole na III stopniu utlenienia są przyswajane przez organizm i używane jako kofaktory wielu enzymów stanowiących ważne elementy metabolizmu.
Sole na VI stopniu utlenienia są natomiast toksyczne, od dawna wiadomo także, że mają działanie rakotwórcze. Jest to jedna z przyczyn przez które obecnie studenci na zajęciach chemii nie myją naczyń chromianką.

W związku z poszerzaniem się wiedzy o dobrych skutkach chromu III, a zwłaszcza o potencjalnym wpływie na masę ciała, producenci suplementów zaczęli produkować najrozmaitsze preparaty z solami chromu. Co rodziło dość oczywiste obawy, czy aby przypadkiem taki suplement nie będzie się gdzieś utleniał do toksycznej formy. Aby temu zaradzić suplemenciarze odpowiednio modyfikowali skład tabletek, chętnie używając organicznych soli i chelatów, które oprócz większej stabilności dodatkowo lepiej się wchłaniały. Ponieważ zaś w organizmie chrom nie utleniał się, wydawało się, że w takim razie suplementy te są całkiem bezpieczne.

Najnowsze badane międzynarodowego zespołu podważa jednak ten pogląd. Badacze potraktowali wyizolowane komórki tkanki tłuszczowej roztworami zawierającymi związki chromu III takie jak używane w suplementach, a więc na przykład octan, azotan lub kompleks z cysteiną, i przy pomocy spektroskopii fluorescecyjnej stwierdzili, że w komórkach zachodziło częściowe utlenienie do chromu VI.
Wybrano akurat adipocyty, to jest komórki tkanki tłuszczowej, z powodu znanej właściwości wydzielania nadtlenku wodoru w reakcji na insulinę. Nadtlenek jest silnym utleniaczem, zdolnym utlenić chrom III do chromu VI, co teraz udało się zaobserwować na żywych komórkach. To zaś oznaczałoby, że długotrwałe zażywanie dużych ilości suplementów chromu III niesie większe ryzyko zdrowotne, niż to dotychczas przypuszczano.[3]

Organiczny filtr na gazy bojowe.
Metal-Organic Frameworks czyli, jak to się tłumaczy metalo-organiczne szkielety (dokładniej byłoby tłumaczyć "kraty") to szczególny rodzaj materiałów który wywołuje coraz większe zainteresowanie. Jest to właściwie usieciowany, wielocentrowy kompleks zawierający rozgałęzione ligandy organiczne łączące się z wieloma jonami centralnymi. Struktura materiału jest na tyle regularna i dobrze zdefiniowana, że może on tworzyć kryształy. Pomiędzy częściami szkieletu powstają stosunkowo duże przestrzenie, otrzymana struktura jest zatem niezwykle porowata.
Ze względu na to, że tak usieciowane kompleksy mogą selektywnie pochłaniać inne substancje, a także wchodzić z nimi w reakcje, badania nad MOF-ami są dość intensywne, coraz pojawiają się nowe informacje o nowych zastosowaniach, a ja będę musiał poświęcić im osobny artykuł.

Na razie jednak nowinka - wynaleziono metalo-organiczny szkielet który mógłby został użyty do ochrony przed gazami bojowymi.
Szkieletowy kompleks cyrkonu z kwasem tereftalowym, w tym także wersje wzbogacone o tertbutanolan litu, okazały się być dobrymi katalizatorami które przy obecności śladów wody hydrolizują związki fosforoorganiczne, podobne do gazu musztardowego. Ponieważ związkiem tym można pokrywać włókna i materiały, dość oczywista jest przydatność nowo odkrytego związku w filtrach powietrza, mających neutralizować gazy bojowe.[4]


Cytryny i siarka do oczyszczania wody
Chemicy na świecie poszukują jak najprostszych metod produkcji przydatnych substancji, tak aby były one w miarę możliwości jak najtańsze. Tym tropem poszedł zespół chemików z Australii, którzy pokazali jak z siarki i składnika skórki cytrynowej stworzyć substancję oczyszczającą wodę z metali ciężkich.

D-Limonen to monoterpen będący główną substancją zapachową zawartą w skórce cytryny, jest częstym składnikiem mieszanej zapachowych i środków czystości. Ponieważ odzyskuje się go ze zmielonej skórki, której obtarcie jest jednym z etapów produkcji soku cytrynowego, przy dość dużej produkcji rocznej jest związkiem względnie tanim. Badacze szukający nowych materiałów chelatujących jony metali ciężkich zainteresowali się doniesieniami o tym, że limonen może utworzyć połączenia wielosiarczkowe. Wiadomym było, że liniowe wielosiarczki chętnie kompleksują jony metali, dlatego taka właściwość łatwej w otrzymaniu pochodnej taniego związku naturalnego byłaby bardzo korzystna.

Wzięto czystą siarkę i ogrzano do stopienia. W temperaturze 170 stopni, w której pękają pierścieniowe cząsteczki siarki, dodano do niej odpowiednią ilość limonenu. Z powstałej brunatnej masy oddzielono nieprzereagowaną siarkę, będący wynikiem utlenienia cymen i inne produkty uboczne, otrzymując czerwoną woskowatą substancję będącą cyklicznymi połączeniami dwóch cząsteczek limonenu, połączonych mostkami wielosiarczkowymi.

Jak się okazało substancja ta chętnie wychwytuje z wody jony metali ciężkich, w przypadku jonów rtęci II dodatkowo reagując wyraźną zmianą zabarwienia, co może mieć zastosowanie analityczne. [5]
---------
[1] D. Aydin et al.; Gelation-Stabilized Functional Composite-Modified Bitumen for Anti-icing Purposes, Ind. Eng. Chem. Res., 2015, 54 (50), pp 12587–12596

[2] Weber M. D.;  Bioinspired Hybrid White Light-Emitting Diodes. Advanced Materials, 2015; 27 (37): 5493

[3] Wu L.E. et al.; Carcinogenic Chromium(VI) Compounds Formed by Intracellular Oxidation of Chromium(III) Dietary Supplements by Adipocytes, Angew. Chem. Int. Ed. Volume 55, Issue 5
Pages 1742–1745

[4] Subendu S.M., Hans-Jürgen H.; Breaking Down Chemical Weapons by Metal–Organic Frameworks, Angew. Chem. Int. Ed. Volume 55, Issue 1, Pages 42–44

[5] M.P. Crockett et. al, Sulfur-Limonene Polysulfide: A Material Synthesized Entirely from Industrial By-Products and Its Use in Removing Toxic Metals from Water and Soil, Angewandte Chemie International Edition, 55, 5 [Open Acces]


czwartek, 4 lutego 2016

Cztery nowe pierwiastki

Tablica Mendelejewa jaką znamy z pracowni szkolnych została oficjalnie uzupełniona o cztery brakujące pierwiastki o numerach 113, 115, 117 i 118. Sposób w jaki media relacjonowały ten fakt był jednak nieco mylący - wielu zrozumiało, że pierwiastki te właśnie odkryto.
W rzeczywistości otrzymano je już wcześniej, jednak dopiero teraz Międzynarodowa Unia Chemii Czystej i Stosowanej, czyli IUPAC, uznała nie tylko, że odkrycia są prawdziwe, ale też że pierwiastki są dostatecznie dobrze zbadane aby oficjalnie wpisać je na listę. Pierwsze doniesienia o otrzymaniu jednego z tych pierwiastków pochodziły z 2002 roku, minęło więc aż 13 lat.
Ostrożność w potwierdzeniu odkrycia miała w tym przypadku dość konkretne przyczyny - wokół tych pierwiastków już wcześniej panowało całkiem spore zamieszanie.
118 - Ununoctium
W 1999 roku badacze Lawrence Berkeley National Laboratory z USA ogłosili, że dokonali syntezy pierwiastków 116 i 118. Co ciekawe metoda została oparta o wyliczenia polskiego fizyka Roberta Smolańczuka, który w tym czasie odbywał tam staż podoktorski. W wyniku zderzenia jonów kryptonu 86 i ołowiu 206 otrzymano kilka atomów pierwiastka 118, które po wyemitowaniu cząstki alfa zamieniły się w pierwiastek 116. Super.
Teraz należało niezależnie potwierdzić ten wynik. Chodziło bowiem w końcu o kilka atomów w detektorze, rozpadających się po upływie ułamków sekund, gdzie spore znaczenie ma właściwa interpretacja sygnałów. Aby wynik uznać za pewny, należało nie tylko wykonać odpowiednio dużo pomiarów, ale też powtórzyć w miarę możliwości przez inny zespół naukowy i na innym sprzęcie.
W kilku ośrodkach posiadających odpowiednie akceleratory próbowano przeprowadzić syntezę wedle tej samej metody jeszcze w tym samym roku, jednak pierwiastka nie udało się otrzymać. W obliczu narastających wątpliwości autorzy pierwotnego zgłoszenia opublikowali w roku 2000 pracę w której udowadniali, że... syntezy nie da się powtórzyć. Po tej publikacji uznano powszechnie, że odkrycie było w najlepszym razie pomyłką. Wreszcie w 2002 roku po wewnętrznym śledztwie szef zespołu z Berkeley, rosyjski fizyk Wikor Ninow, przyznał się do sfabrykowania dowodów na odkrycie dwóch pierwiastków.

Nic więc dziwnego, że gdy w tym samym 2002 roku rosyjscy badacze z ośrodka w Dubnej ogłosili, odkrycie pierwiastka 118, świat naukowy podszedł do tej wieści ze sporą rezerwą. Podobnie ostrożne były reakcje na powtórzenie tej syntezy w roku 2006 czego dokonano w Berkeley. W 2011 roku, po przeanalizowaniu danych IUPAC uznała, że obie zgłoszone syntezy były poprawne (i nie były fałszywkami) ale wyniki pomiarów były obarczone zbyt dużą niepewnością.
To jaki właściwie pierwiastek otrzymano jest sprawdzane w sposób pośredni - bada się jakie promieniowanie wydziela otrzymana substancja w czasie przemian, czy są to cząstki alfa, czy promieniowanie gamma, i jaką mają energię. Ponieważ ciężkie jądra rozpadają się na inne nietrwałe jądra, po każdej syntezie rejestruje się kaskadę kolejnych sygnałów związanych z kolejnymi przemianami. Pewne wartości energii emitowanego promieniowania są dla pewnych znanych izotopów znanych pierwiastków charakterystyczne, wyłapanie tego sygnału pozwala więc na ustalenie do jakiego punktu zmierzała przemiana, na zasadzie:  "aha nasz X wyemitował cząstkę alfa, botem cząstkę beta, potem cząstkę alfa i kwant gamma a potem cząstkę alfa o energii charakterystycznej dla znanego już izotopu kiuru, więc tym iksem musi być taki a taki pierwiastek".
Problem w przypadku doniesień zespołów naukowych polegał na tym, że w ciągu przemian  otrzymany Uuo zamieniał się w dotychczas nie znane izotopy promieniotwórczych pierwiastków.

Ostatecznie należało dokonać syntezy przewidzianego teoretycznie izotopu liwermoru* 290 aby potwierdzić, że rozpadając się wydziela promieniowanie o takiej właśnie energii jak obserwowana w przemianach domniemanego pierwiastka 118. Dopiero wtedy udało się zweryfikować podany ciąg przemian i potwierdzić identyfikację pierwiastka.
[1],[2]

117 - Ununseptium
W tym przypadku nie było tak dużych kontrowersji. Pierwsze atomy otrzymano w 2010 roku w rosyjskim ośrodku w Dubnej, we współpracy z amerykańskim Oak Ridge. Amerykanie wytworzyli potrzebny izotop berkelu, który w Rosji był bombardowany jonami wapnia. Otrzymano ostatecznie 6 atomów, które rozpadały się na dwa różne sposoby.
Również w tym przypadku pojawił się problem z rozpadem na nieznane izotopy. Najpierw w następnym roku zsyntezowano jeden z izotopów potomnych, potem zespół wykonał jeszcze kilka prób, aż wreszcie w roku 2014 synteza została powtórzona w ośrodku w Darmsztadzie w Niemczech, co niezależnie potwierdziło wcześniejsze dane.[3]

115 - Ununpentium
Współpraca Rosjan z Amerykanami okazała się owocna też dla pierwiastka 115, otrzymanego po raz pierwszy w 2003 w ośrodku w Dubnej. W wyniku bombardowania jonami wapnia tarczy wykonanej z ameryku powstało kilka atomów nowego pierwiastka. Ten następnie emitował cząstkę alfa zamieniając się w inny nowy pierwiastek o liczbie atomowej 113. Podobnie jak w poprzednich przypadkach problematyczne było powtórzenie tego wyniku i potwierdzenie zaproponowanego ciągu przemian, z powodu powstawania nie znanych izotopów potomnych. Dopiero w roku 2014 ośrodek w Darmszadzie powtórzył wyniki Rosjan. Rok później inne potwierdzenie, oparte o syntezę izotopów potomnych, przeprowadzono w Berkeley.[4]

113 - Ununtrium
Choć w uznanej syntezie pierwiastka 115 produktem jego rozpadu miał być pierwiastek 113, to jednak IUPAC uznała, że dostatecznie udokumentowane są dla niego doniesienia japońskiego zespołu RIKEN, który ogłosił otrzymanie Uut w 2004 roku. Atom poszukiwanego pierwiastka powstał po zderzeniu jonu cynku z bizmutem.
W kolejnych latach badacze RIKEN wytworzyli więcej atomów różnych izotopów Uut. Największe znaczenie dla uznania odkrycia miała synteza z 2012 roku, gdy otrzymany atom w wyniku przemian zamienił się w znany wcześniej izotop mendelewu, co rozwiązywało problem pojawiający się we wszystkich wcześniejszych przypadkach. [5]

Wszystkie te pierwiastki mają wyjątkowo krótki czas życia. Najbardziej stabilny izotop pierwiastka 113 - Uut 286 rozpada się po upływie 19 sekund, dla pierwiastka 115 najtrwalszy izotop rozpada się po 200 milisekundach, dla pierwiastka 117 po 22 milisekundach a dla pierwiastka 118 po upływie 0,89 milisekundy. Trudno więc oczekiwać, aby znalazły jakieś zastosowanie.
Niemniej pomiar właściwości otrzymanych izotopów stanowi kolejny test modeli teoretycznych, na podstawie których ustala się właściwości pierwiastków.

Obecnie świat czeka na jeszcze jedno interesujące rozstrzygnięcie - nazwanie nowych pierwiastków. Obecne tymczasowe nazwy to po prostu łacińskie liczebniki. Dla pierwiastka 118 Rosjanie proponowali już między innymi nazwę dubnium, od nazwy ośrodka badawczego,  dla 115 proponowano langevinium, od fizyka Paula Langevina. W przypadku pierwiastka 113 dla którego pierwszeństwo odkrycia przyznano zespołowi z Japonii, pojawiają się spekulacje wokół takich nazw jak japonicum, rikenium czy nishinanium.
Pojawiły się też propozycje alternatywne, jak nazwanie któregoś z nich lemmium na cześć zmarłego muzyka Motorhead, czy octarinium w nawiązaniu do twórczości Terry'ego Ptarchnetta.

----------
* Biorąc pod uwagę, że pierwiastek ten rozpada się w ciągu milisekund, nazwa "żyjący bardziej" jest dla liwermoru raczej niestosowna

[1] https://en.wikipedia.org/wiki/Ununoctium
[2] http://www.iupac.org/news/news-detail/article/discovery-and-assignment-of-elements-with-atomic-numbers-113-115-117-and-118.html
[3]  https://en.wikipedia.org/wiki/Ununseptium
[4] https://en.wikipedia.org/wiki/Ununpentium
[5] https://en.wikipedia.org/wiki/Ununtrium

poniedziałek, 15 września 2014

Ile pierwiastków występuje w przyrodzie?

Proste pytanie i nieprosta odpowiedź - ile pierwiastków występuje w przyrodzie? Z pewnością obiło się wam ono o uszy na lekcjach chemii. Wydaje się proste - rzut okiem na tablicę Mendelejewa. Pierwiastki sztuczne zaczynają się po uranie. Uran ma numer 92 więc tyle jest tych występujących w przyrodzie pierwiastków. I tak często traktują rzecz rozmaite strony a nawet podręczniki szkolne. Tylko że to nie jest tak łatwo powiedzieć ile.

In minus
Od tych 92 pierwiastków zwykle całościowo pojmowanych jako "niesztuczne" trzeba oczywiście odjąć dwa otrzymane sztucznie, mianowicie technet i promet.
Technet o liczbie atomowej 43 jest dość pechowy, bo jest najlżejszym niestabilnym pierwiastkiem. Najdłużej żyjący izotop 98-Tc ma czas półtrwania ok. 4 miliony lat co oznacza że po kilkuset milionach lat cała ilość jaka mogła być zawarta w pierwotnej materii z jakiej powstała Ziemia już się rozpadła. Dlatego po bezowocnych poszukiwaniach w minerałach, technet otrzymano w 1937 roku, napromieniowując neutronami molibden.
Nietrwałość technetu jest wynikiem złożenia się dwóch zasad rządzących trwałością jąder. Jądra o nieparzystej liczbie protonów są mniej trwałe. Ponadto liczby masowe izotopów nie są całkiem niezależne dla kolejnych pierwiastków - u sąsiadujących pierwiastków nie mogą być trwałe izotopy o takich samych masach. W przypadku technetu o nieparzystej liczbie neutronów, jedyną masą w której powinien zachować równowagę jest 98 u, ponieważ jednak trwałe izotopy o tych masach mają molibden i ruten po dwóch stronach technetu w okresie, ten izotop nie może być trwały.
Drugim takim pechowcem jest promet o liczbie atomowej 61, też nieparzystej, którego najtrwalszy izotop ma czas półtrwania 17,7 lat.

In plus
Z drugiej strony należy zastanowić się, co to właściwie znaczy "występuje w przyrodzie" - chodzi o tylko to że dało się go wykryć w warunkach naturalnych, czy może o ilości które dają się wyodrębnić? Bo przy tej pierwszej definicji listę "występujących w przyrodzie" można znacznie rozszerzyć.
W rudach uranu w wyniku spontanicznego rozszczepu jądra wykrywa się technet, zwłaszcza w rudzie z pewnego złoża w Kongu w ilości 0,2 ng/kg. W rudach uranu wyśledzono też ślady prometu, ze względu na krótki czas półtrwania będącego tylko przejściowym produktem rozpadów, przy czym na postawie rozpowszechnienia uranu szacuje się że na ziemi w danym momencie istnieje maksymalnie 500 g prometu. Linie widmowe tych pierwiastków wykryto też w pewnych szczególnych gwiazdach, jak Gwiazda Przybylskiego.
Można oczywiście zakwestionować tą ich "występowalność" na zasadzie "to tyle że właściwie nic", tylko że podobnie rzadkie są też inne pierwiastki, zwykle zaliczane do naturalnych. Frans, najcięższy z litowców ma czas półtrwania niespełna 22 minuty i w całej Ziemi jest go około 20 gramów. Nigdy nie wyizolowano czystego metalu. Najcięższy halogenek, astat o licznie atomowej 85 ma czas półtrwania 8 godzin i prawdopodobnie na całej ziemi obecny jest w danej chwili w ilości maksymalnie kilku gram. Protaktyn pojawia się w rudach uranu w ilości ok. 0,3 ppm, rad w ilości 0,14 ppm.

Pod tym względem na miano naturalnego bardziej już zasługuje pluton i neptun, pierwiastki znane jako sztuczne ale występujące w rudach uranu. Np-237 jest najtrwalszy i ma czas półtrwania 2 miliony lat. Powstaje w wyniku wychwytu neutronu w bardziej zagęszczonych rudach uranu występując w ilości około 0,001 ppb. Nieco więcej jest w rudach plutonu, którego najtrwalszy izotop ma czas półtrwania 80 mln lat, co oznacza iż pewne śladowe ilości mogły zachować się aż z czasów formowania ziemi. Wykryto go w glebie księżycowej i rudach uranu oraz w większej ilości w rudzie tworzącej naturalny reaktor jądrowy w Oklo.
Ponieważ z rozpadu uranu powstaje ameryk uznaje się za możliwe jego powstawanie w przyrodzie, ale w tak małych ilościach, że nie wykrywalnych. W zasadzie taka możliwość zachodzi też dla kiuru i berkelu, choć wtedy chodziłoby raczej o kilka atomów. 

Suma
Jak zatem określić ile jest tych "naturalnych" pierwiastków?
Tych które dało się w naturze wykryć i wyizolować choćby w śladowych ilościach jest 94, z czego 4 zostały najpierw stworzone sztucznie a potem dopiero wykryto ich ślady w naturze.

sobota, 30 sierpnia 2014

Chemiczne mezalianse

Jak uczono was w szkołach, ostatnia po prawej kolumna układu okresowego, to pierwiastki nazywane gazami szlachetnymi. Nazwa ta zaś wynika stąd, że nie tworzą one związków chemicznych z innymi pierwiastkami.
Tylko, że akurat to ostatnie, to nie do końca prawda.

Pierwsze gazy szlachetne odkryto w kosmosie.
Obserwując widmo korony słonecznej podczas zaćmienia w roku 1868 roku, chemicy Janssen i Lockyer zauważyli nietypową żółtą linię emisyjną, której nie dało się przyporządkować żadnym znanym wówczas pierwiastkom. Ponieważ już wówczas zdawano sobie sprawę, że każdy pierwiastek po pobudzeniu świeci światłem zawierającym inny zestaw linii, było oczywistym wnioskiem że ta obserwowana, odpowiada obecności nowego pierwiastka.
Od greckiej nazwy słońca ów kosmiczny pierwiastek nazwano Helium, ponieważ zaś nie odnaleziono go na ziemi, długi czas sądzono, że występuje tylko w gwiazdach. Było tak do czasu, gdy pewien geolog stwierdził jego obecność w gazach uwięzionych w zastygłej lawie wulkanicznej. Zaczęto więc sprawdzać pod tym kątem gazy uwalniane z różnych minerałów, aż 12 marca 1895 roku William Ramsay wydzielił go rozpuszczając w kwasie Clevelit - rudę uranu i pierwiastków ziem rzadkich.

Nieco wcześniej dokonano jednak innej zastanawiającej obserwacji - lord Cavendish zauważył pod koniec XVIII wieku, że azot otrzymany z powietrza zawiera niewielką ilość niereaktywnej substancji. Przeprowadzał amatorsko próby łączenia azotu z tlenem w obecności iskier elektrycznych, i po wyłapaniu powstających tlenków azotu w wodzie pozostała mu niewielka objętość gazu. W zasadzie przez długi czas nikt nie zwracał na to uwagi, dopóki postępy w wyznaczaniu masy atomowej pierwiastków nie ujawniły tajemniczej niezgodności - masa atomowa azotu otrzymanego drogą syntezy chemicznej była nieco niższa, niż azotu otrzymanego z powietrza, drogą usuwania kolejnych składników.
Zwykle produkcję azotu z powietrza przeprowadzano w ten sposób, iż najpierw przepuszczano powietrze nad rozżarzonymi opiłkami żelaza, które zabierało z niego Tlen, stanowiący piątą część objętości. Potem przeprowadzano pozostałość przez stężony roztwór zasady, aby wyłapać cały dwutlenek węgla. Na końcu gaz osuszano, otrzymując niereaktywną pozostałość, uznawaną za czysty azot.

Jeśli jednak azot z powietrza był cięższy od tego z minerałów, to wobec obserwacji Cavendisha nasuwał się dość oczywisty wniosek - azot z powietrza nie jest czysty, i zawiera domieszki równie niereaktywne jak on sam. Ramsay zaproponował dla tej substancji nazwę Argon, od greckiego argos, czyli leniwy. Należało go zatem wydzielić. W 1894 roku wraz z lordem Rayleygh'em przepuścił powietrze nad rozżarzoną miedzią, usuwając cały tlen. Pozostałość wpuścił do naczynia z płonącym magnezem. Magnez miał tak wysoką temperaturę ognia, że pochłaniał ślady tlenu, pary wodnej, dwutlenku węgla i wreszcie łączył się bezpośrednio z azotem atmosferycznym. Po przepuszczeniu kilka razy tej samej pozostałości otrzymał wreszcie gaz stanowiący 1% objętości powietrza, który nie reagował z magnezem a widmo światła po wzbudzeniu wyładowaniami elektrycznymi wykazywało oprócz śladów azotu obecność jeszcze nie opisanych, nowych linii emisyjnych. Był to zatem czysty argon. O rok późniejsze wykrycie helu w rudach uranu było związane z próbą znalezienia argonu w formie mineralnej.

Ramsay nie spoczął jednak na laurach - opisując nowy pierwiastek stwierdził, że ma właściwości podobne do Helu a w układzie okresowym należy umieścić go na prawo od wszystkich pozostałych, oraz że pod nim pojawia się wobec tego nowa kolumna, która dobrze pasuje do odstępu między ostatnią i pierwszą kolumną układu. Zatem prawdopodobnie musiały istnieć jeszcze inne pierwiastki, o podobnych właściwościach fizycznych, to jest będące niereaktywnymi gazami, i co wydawało się najbardziej prawdopodobne, występujące także w powietrzu, w śladowych ilościach.

Niedługo wcześniej polscy chemicy Karol Olszewski i Zygmunt Wróblewski dokonali skroplenia powietrza i innych gazów. Udało im się też skroplić i zestalić świeżo odkryty argon, który okazał się skraplać w temperaturze niższej niż azot. Nasuwało to na myśl pomysł, aby próbować wydzielić te pierwiastki przez destylację z powietrza.
Wraz z swym asystentem Morrisem Traversem zbudował w swej pracowni ogromną aparaturę do skraplania, uruchamiając ją na początku 1898 roku. Drugim równolegle prowadzonym eksperymentem było oczyszczane argonu otrzymanego drogą chemiczną, a więc najpierw pochłaniając tlen nad rozgrzaną miedzią a potem azot nad płonącym magnezem; po poddaniu tej procedurze 1930 litrów powietrza otrzymali 18 litrów argonu, co wydawało się rozsądną ilością.
W jednym z pierwszych doświadczeń ochładzali oni argon aż do skroplenia, stwierdzając że po wykropleniu 14 litrów pozostało im 50 mililitrów gazowej pozostałości. Badania spektralne wykazały pojawienie się w widmie linii emisyjnych, których nie obserwowano w innych pierwiastkach. Przy okazji zwrócono uwagę na intensywny, czerwono-pomarańczowy kolor światła wzbudzonego elektrycznością gazu.

Po wyznaczeniu masy i gęstości tej pozostałości w maju 1898 roku ogłosił wykrycie nowego pierwiastka, nazwanego neonem, był bowiem nowy. [1]
Równocześnie trwał dalej eksperyment ze skraplaniem powietrza. Po wykropleniu odpowiedniej ilości, powoli ogrzewano zbiornik, zbierając kilka frakcji zawierających tlen, azot i argon, Najcięższa frakcja zawierała gaz o charakterystycznym widmie, nazwany kryptonem od greckiego słowa "ukryty". Po zbadaniu jego właściwości zgłoszono jego odkrycie na początku czerwca 1898 roku

Po oczyszczeniu ostatniej frakcji badacze otrzymali jeszcze jeszcze jeden gaz, nazwany ksenonem, od greckiego słowa "obcy" lub "dziwny". Zgłoszenie odkrycia nastąpiło we wrześniu tego samego roku. Na sam koniec badacze stwierdzili jeszcze, że po oddzieleniu od ogromnej ilości ciekłego powietrza wszystkich poznanych gazów, otrzymali niewielką pozostałość, która okazała się być helem, potwierdzając tym samym jego obecność w powietrzu.[2]

Odkrycie trzech nowych pierwiastków w ciągu kilku miesięcy, odkrycie argonu stanowiącego 1% objętości powietrza i odkrycie na ziemi znanego z kosmosu helu, to całkiem niezłe osiągnięcie. Nic więc dziwnego że w 1904 roku William Ramsay zostaje uhonorowany Nagrodą Nobla. W późniejszym okresie włączył się też w badania "emanacji" czyli gazów powstających przy rozkładzie pierwiastków promieniotwórczych, wykazując iż gazy wydzielane przez uran, rad i tor zawierają ten sam gazowy pierwiastek, dziś znany jako radon.

Wszystkie helowce są gazami o niskiej temperaturze wrzenia, bezbarwnymi i pozbawionymi zapachu. Nie tworzą cząsteczek tak jak inne gazy, zaś bardzo słabe oddziaływania wzajemne atomów powodują, że właściwościami bardzo zbliżają się do gazu doskonałego. Hel jest drugim najlżejszym pierwiastkiem po wodorze, stąd wykorzystanie do napełniania balonów. Ma też najniższą temperaturę wrzenia wynoszącą 4 kelwiny, i pod normalnym ciśnieniem nie krzepnie przy dalszym ochładzaniu, zamiast tego przyjmując stan nadciekły, w którym zanika lepkość a pewne efekty kwantowe stają się zauważalne w dużej skali.
Na skalę przemysłową hel otrzymuje się z gazu ziemnego któremu towarzyszy; jednym z miejsc gdzie jest produkowany jest zakład przetwarzania gazu w Odolanowie.
Neon jest używany w lampach neonowych, dając intensywne, czerwone światło, bywa używany jako chłodziwo. Ma bardzo wąski zakres płynności - skrapla się przy 27 K a krzepnie przy 25 K.
Argon jest używany głównie do wytworzenia atmosfery obojętnej przy spawaniu i hutnictwie, w żarówkach i lampach iskrowych, a dzięki niskiej przewodności cieplnej także do gazowej izolacji na przykład w szczelnych oknach. Spośród wszystkich gazów szlachetnych jest najtańszy, otrzymuje się go z powierza.
Krypton jest często używany w oświetleniu - to nim najczęściej napełnia się neony, dające białe światło, którego kolor łatwo zmienić malując szklaną rurę.
Ksenon jest używany w lampach błyskowych dających jasne, białoniebieskie światło, ma też ciekawe zastosowania medyczne - jako środek do znieczulenia, a nawet środek dopingujący (w mieszance z tlenem wywołuje w organizmie reakcję podobną do tej wywołanej przebywaniem na dużej wysokości, stymulując zwiększoną produkcję czerwonych krwinek).
Radon jest szkodliwym, promieniotwórczym gazem zbierającym się w piwnicach i przedostającym się do wody, co już kiedyś opisałem.


I tak oto odkryto po kolei wszystkie helowce, przekonując się że są bardzo niereaktywne. Gdy zaś stworzono teorię powstawania wiązań, mówiącą między innymi, że atomy tworzą wiązania dążąc do oktetu elektronowego na ostatniej powłoce, dla wszystkich było jasne ze posiadające taki układ helowce nie mają po co wiązać się z innymi pierwiastkami. I chyba tylko tym przekonaniem można tłumaczyć brak badań w tym kierunku, oraz zaskoczenie, że jest to jednak możliwe.

W 1962 roku amerykański chemik Neil Bartlett zajmujący się chemią fluoru, przygotował sześciofluorek platyny, stabilny i lotny związek z platyną na +6 stopniu utlenienia, najwyższym możliwym i bardzo niestabilnym. Platyna w tym związku bardzo chętnie dąży do tego aby zredukować się do niższych stopni, a więc aby pobrać skądś elektron. Cząsteczka z której sześciofluorek zabrałby elektron, uległaby więc utlenieniu, dlatego sześciofluorek platyny jest mocnym utleniaczem.
O tym jak mocnym, Bartlett przekonał się badając czerwony osad zbierający się na dnie kolb z mieszaniną badanego związku i powietrza. Nie była to zredukowana forma związku, lecz sól w której sześciofluorek platyny stanowił anion, zaś kationem była cząsteczka tlenu, z której zabrano jeden elektron bez rozrywania wiązania. Tlen został utleniony.
Z badań jonizacji pod wpływem pola elektrycznego było wiadomo że utlenienie cząsteczki tlenu wymagało bardzo dużej energii 1175 kJ/mol, co wskazywało na siłę nowego utleniacza. Wyniki takich badań jonizacji były już znane i stabelaryzowane, toteż gdy Bartlett zaglądał do literatury aby znaleźć tą wartość, zauważył obok w tabeli pozycję o podobnej wartości. Energia jonizacji ksenonu wynosiła 1170 kJ/mol, a więc była nawet niższa niż dla cząsteczki tlenu. Jeśli reakcja z tlenem zachodziła tak łatwo - pomyślał badacz - to może mogłaby zajść z ksenonem? Oczywiście dobrze wiedział, że gazy szlachetne są szlachetne i związków nie tworzą, jeśli jednak udałoby się zjonizować ksenon, to mógłby mimo wszystko utworzyć jakieś połączenie.
Pożyczył od kolegów próbkę ksenonu i umieścił w butli szklanej. W drugiej umieścił gazowy sześcioplatynian i obie butle połączył rurką przedzieloną przesłoną. Gdy obie butle były napełnione, wyciągnął przesłonę, umożliwiając obu gazom mieszanie się. Jak sam potem opisywał, reakcja zachodziła "pięknie" - w pobliżu łączenia w ciągu kilkunastu sekund zaczął się zbierać żółty osad.

O ile sama reakcja zachodziła łatwo, to największą trudność sprawiło Bartlettowi przekonanie kolegów że otrzymał niemożliwy związek. Spotykał się z niedowierzaniem i podejrzeniem pomyłki, ponieważ jednak doświadczenie udawało się powtórzyć a z rozkładu krystalicznego związku powstawał ksenon, musiano uznać że związek gazu szlachetnego jest faktem. Gdy w czerwcu 1963 roku opublikował pracę na ten temat, inni chemicy ochoczo rzucili się na poszukiwanie innych takich związków, których dotychczas nie badano.
Już we wrześniu doniesiono o tworzeniu się czterofluorku ksenonu w mieszaninie obu gazów podgrzewanej do wysokich temperatur, w październiku wykryto jeszcze dwufluorek, który powstawał tak łatwo, iż reakcja zachodziła w suchej szklanej bańce z mieszanką gazów, po wystawieniu na słońce. Co ciekawsze, reakcję taką próbowano przeprowadzić 50 lat wcześniej, gdy szlachetność pierwiastka nie była jeszcze ugruntowana. Usiłowano wtedy zainicjować reakcję iskrą elektryczną, ale o wystawieniu na słońce nikt nie pomyślał i żadnej reakcji nie zaobserwowano.

Obecnie chemia ksenonu jest dość szeroka. W reakcji z tlenem w odpowiednich warunkach tworzy trójtlenek. Ten po rozpuszczeniu w wodzie daje kwas ksenonowy, którego sole stanowią bardzo silne utleniacze. Z kwasu można uzyskać czterotlenek ksenonu, nietypowy związek z ksenonem na +8 stopniu utlenienia, gdzie w tworzenie wiązań zaangażowane są wszystkie elektrony oktetu. Swoistą ironią wobec dawnych chemików jest jon czteroksenonozłota - połączenie  dwóch pierwiastków nazywanych szlachetnymi z powodu niereaktywności.

Mniej obszerna jest chemia lżejszego gazu szlachetnego, kryptonu. Już w 1963 udało się zsyntetyzować dwufluorek poddając działaniu iskry elektrycznej mieszaninę gazów. Jest to bardzo silny utleniacz i środek fluoryzujący. Może tworzyć połączenia z azotem, ale mniej trwałe, na przykład HCN-Kr. Udało się też otrzymać czterofluorek, ale bardzo nietrwały, rozkładający się powyżej -70 st. C.

Dość mało poznana jest chemia radonu - wiadomo że w temperaturze pokojowej reaguje z fluorem, ulegając z czasem samorozkładowi pod wpływem własnego promieniowania. Ze względu na krótki czas półtrwania izotopów radonu i problemy wywołane przez jego promieniotwórczość nie zbadano dużej ilości połączeń - znane są większe fluorki, potwierdzono trójtlenek, podejrzewa się tworzenie kwasu radonowego. W sumie szkoda, bo może udałoby się stworzyć chemiczny pochłaniacz tego szkodliwego gazu.

Im bardziej w górę układu okresowego tym większa jest energia jonizacji gazów szlachetnych. Dla argonu udało się otrzymać tylko jeden związek, wodorofluorek, trwały poniżej 40 kelwinów. A pozostałe helowce? Dla Helu i Neonu związków jak na razie nie otrzymano. Znane są jedynie pewne jony, mające pewną trwałość w stanach wzbudzonych, lecz nie zaliczane formalnie do związków z powodu ładunku. Takim przypadkiem jest jon wodorku helu HeH+, możliwy do wytworzenia w próżni i stosunkowo trwały tylko w stanie wzbudzonym. Bardzo łatwo się rozpada, a jego skłonność do oddawania protonu jest tak duża, że formalnie rzecz biorąc stanowi najsilniejszy znany kwas z wyliczoną wartością pK=63. Efekty elektronowe uniemożliwiają tworzenie cząsteczek He2.


Jak właściwie jest z tymi gazami szlachetnymi - reguła oktetu nie działa skoro mogą tworzyć związki? Działa, ale nie jest jedyna. Wszystkie atomy tworząc połączenia dążą do stanu najbardziej stabilnego energetycznie. Jednym z tych stanów, najłatwiejszym do osiągnięcia, jest oktet elektronowy. Jeśli jednak atom zawierający oktet zostanie zjonizowany mocnym utleniaczem, będzie musiał dążyć do innego stanu.
Związki gazów szlachetnych należą w tym przypadku do grupy związków hiperwalencyjnych, to jest zawierających więcej elektronów niż orbitali. Na przykład w difluorku ksenonu uznaje się że wszystkie trzy atomy połączone są wspólnym wiązaniem trójcentrowym czteroelektronowym, w którym dwa elektrony są niewiążące a dwa wiążące. Taki układ ma niższą energię niż dwa wiązania kowalencyjne lub jonowe.

-----
[1]  On the Companions of Argon. Proceedings of the Royal Society of London 63 (1): 437–440.
[2]  William Ramsay , Morris W. Travers (1898). "On a New Constituent of Atmospheric Air". Proceedings of the Royal Society of London 63 (1): 405–408


*http://en.wikipedia.org/wiki/Noble_gas
*http://en.wikipedia.org/wiki/Noble_gas_compound
*http://en.wikipedia.org/wiki/Helium_hydride_ion
* http://www.acs.org/content/acs/en/education/whatischemistry/landmarks/bartlettnoblegases.html
* http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1904/ramsay-lecture.html