informacje



Pokazywanie postów oznaczonych etykietą zdjęcia. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą zdjęcia. Pokaż wszystkie posty

poniedziałek, 4 lutego 2013

Ostatnio w laboratorium (21.)

Jakoś tak wyszło że ostatnimi zajęciami laboratoryjnymi przed sesją egzaminacyjną, były te z chemii instrumentalnej. Nasze zadanie polegało na przygotowaniu roztworów wyciągów roślinnych do badania zawartości polifenoli, w układzie chromatografu cieczowego z detektorem elektrochemicznym.
Ponieważ polifenole łatwo się utleniają, a zwłaszcza w podwyższonej temperaturze, nie mogliśmy zrobić naparu, dlatego zalaliśmy wybrane zioła metanolem i włożyliśmy do płuczki ultradźwiękowej, aby się wyekstrahowały:

W takim urządzeniu próbki poddawane są działaniu ultradźwięków wywołujących we wnętrzu szybkie fluktuacje ciśnienia. Powodują one zniszczenie struktur biologicznych i ułatwiają wnikanie rozpuszczalnika wgłąb cząstek stałych, z tego też powodu ostrzeżono nas abyśmy podczas wkładania próbek do działającej płuczki, nie włożyli tam przypadkiem palca.
Po takim dokładnym przewibrowaniu przesączyliśmy nasze roztwory, mające już zielonkawy kolor, i przelaliśmy do wyparki:

Wyparka to kolba kulista połączona z pompką próżniową i chłodnicą wykraplającą opary. Obrót kolby, rozprowadzający roztwór po ściankach, łaźnia ogrzewająca i wreszcie obniżone ciśnienie sprzyjają szybkiemu odparowywaniu rozpuszczalnika, toteż całe urządzenie jest używane do zagęszczania rozcieńczonych próbek. W naszym przypadku każdy roztwór nabrał zdecydowanie wyraźniejszych kolorków:
W naszym przypadku użytymi ziołami były, od lewej: dziurawiec, liść poziomki i szałwia. Zawartości polifenoli już nie pamiętam, ale nie stwierdziliśmy jakiś nadzwyczajnych odstępstw.


poniedziałek, 17 grudnia 2012

Kiedyś w laboratorium (19.)

W zeszłym roku miałem krótko zajęcia ze spektroskopii w podczerwieni. Zależnie od długości fali promieniowania, otrzymywane są różne widma. W spektroskopii podczerwonej badamy pasma adsorpcyjne, to jest zakresy podczerwieni pochłaniane przez daną substancję. Odpowiadają one odpowiednim grupom w cząsteczce - wiązaniom podwójnym, grupom karbonylowym, aminowym, laktamowym itd. Szerokość, natężenie i położenie pasma pozwala nam dużo powiedzieć na temat budowy cząsteczki. W zasadzie w dużym stopniu widma danego związku są unikalne i wyłącznie dla niego przeznaczone - ale niestety nie zawsze się to udaje.

Aby uzyskać widmo należy przemiatając całe spektrum prześwietlać próbkę związku. Gdy mamy ją w postaci płytki kryształu lub jednolitej masy, nie jest to znów takie trudne, zwykle jednak mamy do dyspozycji drobne kryształki. Najczęstszym sposobem jest zmieszanie naszego związku z dobrze utartym bromkiem potasu, który to dobrze przepuszcza podczerwień. Otrzymany proszek wsypuje się do prasy, opuszcza stempel i pod bardzo wysokim ciśnieniem prasuje "pastylkę". Chlorki, bromki i jodki sodu i potasu pod wysokim ciśnieniem stają się nieco plastyczne - czego spektakularny przykład stanowią wysady solne, a więc maczugowate porcie soli kamiennej, wypchnięte z warstwicowych pokładów przez jakieś osłabienie czy niespoistość warstw. W tym przypadku plastyczność powoduje, iż otrzymujemy półprzezroczystą masę, na tyle trwałą aby nadawała się do badań.
Jedną taką pastylkę robiłem własnoręcznie, gdy zaś wyjąłem podkładkę ze stempla, stwierdziłem że masa została w intrygujący sposób wypchnięta przez szczelinę przy stemplu:

środa, 7 listopada 2012

Ostatnio w laboratorium (17.)

Na ostatniej przed świętami pracowni z chemii proekologicznej, analizowaliśmy kawałki tworzyw sztucznych, aby móc poznać z jakim konkretnie tworzywem mieliśmy do czynienia. Kawałkami tymi były: pocięta folia z opakowania loda, pocięte opakowanie kremu (z etykiety wyczytałem "do rąk i do stóp"), kawałki miękkiej rurki, kawałki uszczelki, kawałki niebieskiej zakrętki od butelki wody mineralnej i kawałek zielonego plastiku z jakiegoś opakowania z gwintem.
Jednym ze sposobów rozróżnienia tworzyw, było poznanie ich gęstości metodą flotacyjną - przez sprawdzenie pływalności w różnych roztworach. Najpierw więc dzieliliśmy je na te, które pływały w widzie i te które tonęły; z tych pierwszych na te które pływały z 30% etanolu i te które tonęły, zaś z tych pierwszych sprawdzaliśmy jeszcze pływalność w 58% etanolu. I tutaj kawałeczek zielonego plastiku po wrzuceniu do roztworu opadł na dno, potem zaczął wynurzać się aż wreszcie pozostał swobodnie zawieszony mniej więcej pośrodku.:

Znaczyłoby to, że roztwór miał akurat taką samą gęstość jak ten plastik (ok. 0,88g/ml). Z drugiej strony materiał był nieprzezroczysty i zabarwiony, musiał więc zawierać wypełniacze i pigmenty, które nieco go dociążyły. A skoro tak, to bez nich pływałby.

Inne próby dotyczyły rozpuszczalności lub nie w acetonie a nasam koniec została nam próba spalania. Niektóre materiały można dosyć łatwo rozróżnić po tym jak się palą. Poliolefiny (polietylen, polibutylen) zapalają się łatwo, słabo kopcą, kapią i po zgaszeniu pachną podobnie do świecy ze stearyny. Tak też zachował się nasz kawałek zielonego plastiku:

 PCW zapala się trudno i kopci, gaśnie po wyjęciu z płomienia i wydziela nieprzyjemny, ostry zapach będący głównie wynikiem wydzielania się chlorowodoru. Polistyren pali się łatwo i silnie kopci. Jeszcze nie podsumowałem notatek i nie zrobiłem sprawozdania, więc na razie nie podam co było czym, a sam już dziś nie pamiętam.

A aspekt proekologiczny? Jeśli będziemy wiedzieli z jakiego plastiku są odpady, będziemy wiedzieli co można zakompostować, co przetopić a co wyrzucić na śmietnisko. Nie wiem jedynie czy w sortowniach stosują takie proste metody - ja bym wolał jakiś spektroskop.

środa, 12 września 2012

Kiedyś w laboratorium (14.)

Gdy mieliśmy zajęcia z radiochemii, prowadzący pokazał nam pouczającą rzecz - sprawdził stopień zjonizowania wykrywany w pomieszczeniu - wynosił ok. 2 miliremów/h. Po czym wziął opakowanie soli dla nadciśnieniowców, o zawartości sodu obniżonej przez dodatek potasu - i tutaj czujnik pokazał prawie 6 mR/h:

Zatem sól jest promieniotwórcza bardziej niż tło. Z czego to wynika? Oczywiście z dodatku potasu.
Naturalny potas zawiera 0,012% izotopu K-40, będącego izotopem nietrwałym. Rozpada się z wydzieleniem cząstek beta z okresem półtrwania  1,27 mld lat zamieniając się w argon. Sól zawierająca większą ilość potasu jest też bardziej promieniotwórcza, zbyt jednak mało aby nam przez samo to tylko  zaszkodziła (na pewno nam zaszkodzi jeśli będziemy jej nadużywali).
Ta właściwość dosyć przecież pospolitego pierwiastka jest używana w radiodatowaniu skał i skamielin - jeśli wiemy jaka powinna być zawartość potasu w skale, to znając różnicę między ilością teoretyczną a rzeczywistą i wiedząc ile argonu nagromadziło się wewnątrz ziaren mineralnych, możemy policzyć wiek próbki w zakresie setek milionów - miliardów lat.

ps. a za niedługo zdaję egzamin licencjacki i będę składał papiery na magisterkę.
ps2. - postanowiłem trochę uporządkować posty i te ze stałego cyklu kiedyś w laboratorium ponumerowałem
ps3. - egzamin zaliczyłem, papiery złożyłem. A że link dawany w komentarzu jest ciekawy, wkleję go w formie aktywnej:
 http://xkcd.com/radiation/
infografika porównująca dawki promieniowania z różnych źródeł. Dawka dla zamieszkania 50 mil od elektrowni węglowej jest większa niż dla zamieszkania 50 mil od elektrowni jądrowej.

wtorek, 21 lutego 2012

Wczoraj w laboratorium (7.)

Na pierwszych zajęciach z biochemii przeprowadzaliśmy próby charakterystyczne na aminokwasy. Tu reakcja Adamkiewicza-Hopkinsa:



Próba wykrywa obecność tryptofanu, aminokwasu stanowiącego składową wielu białek, a dokładnie grupy indolowej. Gdy do mieszaniny tryptofanu z kwasem octowym wleje się ostrożnie stężonego kwasu siarkowego tak, aby utworzył warstwę na dnie, na granicy faz w silnie zakwaszonym środowisku aminokwas reaguje z grupą karbonylową tworząc barwny produkt kondensacji, koncentrujący się w warstwie granic faz i opisywany jako "wiśniowy pierścień". Wszystkie reakcje dla białek i aminokwasów omówię lepiej w osobnym wpisie, bo mi się trochę ich zdjęć nagromadziło.

czwartek, 26 stycznia 2012

Wczoraj w laboratorium... (5.)

Podczas zdawania szafki na pracowni, po wyciągnięciu całego sprzętu zauważyłem, że na dnie erlenmajerki wykrystalizowały resztki czegoś dawno zapomnianego, tworząc intrygujący wzór:
Aż szkoda było myć. Układ igiełek przypomina mi zdjęcie mikroskopowe strzępków grzyba pędzlaka. Co zaś przypomniało mi o pewnym konkursie na mikro i makrofotografię, na który można słać zdjęcia aż do kwietnia.
No ale na razie sesja.

piątek, 6 stycznia 2012

Analiza wody źródlanej "Cisowianka"

Czas chyba aby wrócić tu coś z tego, co wykonywałem na praktykach studenckich w sierpniu tego roku. Jak to już opisywałem, odbyłem je w Laboratorium Ochrony Środowiska Pracy w Siedlcach, a więc w mieście mojej uczelni. Nie miałem tam może jakiś specjalnie efektownych rzeczy do zrobienia, ale zebrałem co nieco materiałów, wartych do przedstawienia.

Podczas jednego z dni, gdy mój prowadzący był nieobecny, aby mieć jakieś zajęcie wykonałem analizę wody mineralnej. Była to akurat Cisowianka.

Cisowianka to, formalnie rzecz biorąc, woda źródlana, nisko zmineralizowana, pobierana z głębokości 100 metrów z pokładów w Drzewcach, koło Nałęczowa. Wprawdzie producent sprzedaje ją jako wodę mineralną, ale zawartość składników mineralnych to tylko 742 mg/l, tymczasem formalnie za mineralną uważa się taką, która zawiera przynajmniej 1g/l . Nazwa ujęcia nawiązuje do uzdrowiska "Cisy" opisanego przez Żeromskiego. Jest to zresztą zabawne, bo opis z Ludzi bezdomnych jest raczej nieprzychylny - Cisy to uzdrowisko wsteczne, prowadzone nieprzemyślane, z którego można było wyjechać bardziej chorym, niż się przyjechało. No cóż, widać nieznajomość literatury nie przeszkadza.

Niestety nie mogłem zrobić pełnej analizy jakościowej i ilościowej, dlatego poprzestałem na badaniu zawartości jonów wodorowęglanowych, wapniowych i magnezowych, a pozostałe składniki oznaczałem jakościowo.

Wodorowęglany:
Zawartość anionów wodorowęglanowych oznaczałem alkacymetrycznie, miareczkując próbkę wody mianowanym kwasem solnym, wobec oranżu metylowego jako wskaźnika.
Dla reakcji:

HCO-3 + H+ CO2 + H2O

jeden mol kwasu reaguje z jednym molem anionów.

Napełniłem więc biuretę mianowanym roztworem HCl o stężeniu 1,02 mol/l, wlałem do kolbki jedną pipetę wody i dwie krople oranżu, po czym bardzo ostrożnie, mając na uwadze nieduże stężenie, po kropli dodawałem kwas aż do momentu, gdy żółty roztwór przybrał kolor pomarańczowy. W tym przypadku wystarczyło 0,85 ml. Dla tak małych ilości błąd oznaczenia może być duży, nie miałem jednak bardziej rozcieńczonego kwasu na podorędziu.
Po przeliczeniu uzyskałem zawartość wodorowęglanów 0,5289 mg/l, co wobec etykietowej 0,5426 mg/l nie było tak dużym błędem.

Wapń:
Oznaczanie wapnia przeprowadziłem kompleksometrycznie, przy pomocy mianowanego roztworu EDTA.

EDTA czyli kwas etylenodiaminotetraoctowy, jest znanym związkiem chelatującym, tworzącym kompleksy z szeregiem metali ciężkich, a nawet z takimi lekkimi jak magnez, wapń czy lit. Posiada aż sześć atomów zawierających wolne pary elektronowe i mogących w związku z tym tworzyć kompleks. Cząsteczka kwasu zwija się, niczym zaciskana pięść, "łapiąc" atom w klatkę. Jeden jon metalu jest kompleksowany przez jedną cząsteczkę EDTA.
Ale po czym wobec tego poznać, że wszystkie jony metalu zostały związane?
W analizie kompleksometrycznej używa się specjalnych wskaźników, które same mogą tworzyć związki kompleksowe, jednak ich trwałość jest mniejsza, niż trwałość kompleksu, jaki metal tworzy z EDTA. Gdy więc wolne jony zostaną związane, titrant zaczyna reagować z kompleksem wskaźnika - zachodzi zatem zjawisko wypierania:

WSK(M) + EDTA WSK + EDTA(M)

Forma związana kompleksu powinna mieć inne zabarwienie niż forma uwolniona, jak zatem łatwo się domyśleć, po związaniu wszystkich jonów metalu, a więc w punkcie końcowym miareczkowania, barwa roztworu ulegnie zmianie.

W przypadku oznaczania wapnia obok magnezu należy silnie zalkalizować środowisko, dodając odpowiednią ilość wodorotlenku sodu, magnez będzie wówczas wiązany w formie wodorotlenku, zaś jego kompleks z EDTA będzie bardzo nietrwały, w związku z czym podczas miareczkowania zmianom stężenia będzie ulegał tylko wapń.

Wskaźnikiem użytym do tego oznaczania będzie Kalces, czyli sól sodowa kwasu kalkonokarboksylowego, który w punkcie końcowym zmienia kolor z różowo-fioletowego na niebieski. Filmu z miareczkowania kalcesem nie mam, ale są zdjęcia:


Kalces przed miareczkowaniem




Kalces po





Tak więc pobrałem dwie pipety badanej wody (podwójna ilość aby zeszło więcej titranta co zmniejsza błąd związany z niedokładnościami biurety), dodałem odpowiednią ilość NaOH, wlałem kilka kropel roztworu wskaźnika i jak się rzekło, miareczkowałem mianowanym roztworem EDTA dopóki nie nastąpiła zmiana zabarwienia.

Po przeliczeniu otrzymałem wynik 0,1242 g/l, co wobec
etykietowej 0,1313 g/l nie jest dużym błędem



Magnez:
Oznaczanie zawartości magnezu wykonuje się pośrednio. Zamiast tak dobierać warunki, aby wyeliminować wpływ wapnia, miareczkuje się po prostu sumę zawartości wapnia i magnezu. Ponieważ zawartość wapnia już poznaliśmy, przez odjęcie jednej wartości od drugiej uzyskamy zawartość samego magnezu.

Użytym przy tym wskaźnikiem jest Czerń eriochromowa T, związek organiczny o ciemnofioletowej barwie, tworzący z metalami kompleks koloru różowo-fioletowego, choć o bardziej soczystym odcieni niż kalces. W pobliżu punktu końcowego roztwór zabarwia się na fioletowo a za punkt końcowy uważa się zabarwienie niebieskie. I tu pomocny będzie film:


Nieco wcześniej napełniając biuretę zalałem fartuch roztworem EDTA, dlatego miareczkuję bez niego, nie zbyt może poprawnie.
Oznaczanie przeprowadza się w środowisku lekko zasadowego buforu amonowego. Po obliczeniach i odjęciu od otrzymanego wyniku oznaczonej wcześniej zawartości samego wapnia, otrzymałem zawartość magnezu 0,02433 g/l, wobec etykietowej 0,0225 g/l. Może gdybym używał bardziej rozcieńczonych titrantów udałoby się błąd zmniejszyć

A pozostałe jony? Chlorkowy oznaczyłem tylko jakościowo - do zakwaszonej kwasem azotowym V próbki dodałem azotanu srebra. Biały osad, rozpuszczający się w roztworze amoniaku i wytrącający się po ponownym lekkim zakwaszeniu, był oznaką jonów chlorkowych. W zasadzie mógłbym oznaczyć chlorki argentometrycznie metodą Mohra, ale brakło mi czasu. Sodu i potasu nie oznaczyłem, bo nie miałem drucika platynowego.

wtorek, 27 grudnia 2011

poniedziałek, 22 sierpnia 2011

Kiedyś w laboratorium... (1.)


Ziarna skrobi pszennej silnie zabarwione roztworem jodu. Zdjęcie z mikroskopu.

Jod pierwiastkowy tworzy ze skrobią związek kompleksowy o silnym, ciemnogranatowym a w większej ilości czarnym zabarwieniu, zauważanym już przy niewielkim stężeniu. Wykorzystuje się to do wykrywania zarówno jodu jak i czynników mogących wyprzeć go z jego soli. Papierki jodoskrobiowe, nasycone jodkiem potasu i skrobią, służą do wykrywania gazowego chloru i ozonu, oba bowiem utleniają jodki do wolnego pierwiastka.

Zdjęcie zrobiłem jeszcze w technikum.
Powiększenie ok. 1000 razy

wtorek, 2 sierpnia 2011

Dziś w laboratorium

Nastawianie miana kwasu fosforowego (V) na naważkę węglanu sodowego wobec oranżu metylowego jako wskaźnika:
Kolory oranżu. Przed, w punkcie końcowym i po

H3PO4 + Na2CO3 → Na2HPO4 + H2O + CO2

W ramach praktyk odbywanych w Siedlcach.
Dziś musiałem zrobić 20 takich miareczkowań.

niedziela, 5 czerwca 2011

Synteza dwuetapowa II : otrzymywanie 1,3,5-tribromobenzenu

Tak więc otrzymałem już 2,4,6-trobromoanilinę, będąca tylko półproduktem, teraz zaś opowiem wam jak otrzymałem produkt finalny.


Tak więc 2,4,6-tribromoanilina ma być zamieniona w 1,3,5-tribromobenzen, który widzicie na obrazku obok. Podstawniki bromkowe ustawione są względem siebie w pozycji meta, niejako na wierzchołkach trójkąta równobocznego.
Tutaj trzeba wyjaśnić rzecz, która mniej obeznanych w Chemii - a zapewne i tacy tu zaglądają - może wprowadzać w błąd, mianowicie numeracja.
Wprowadza się ją dla określenia położenia podstawników względem siebie, tak aby na podstawie samej nazwy można było określić strukturę związku. W tym przypadku atomy bromu, którym wcześniej przypisywaliśmy numerację 2,4,6 w nowym związku są ponumerowane 1,3,5, co jednak nie oznacza że się przesunęły. Ich położenie zarówno względem siebie jak i węgli pierścienia pozostaje takie same, po prostu w pochodnej aniliny grupa aminowa była tą najważniejszą i to od niej zaczynaliśmy numerację; w pochodnej benzenowej numerację zaczynamy od dowolnego atomu bromu - są przecież równocenne - stąd inne cyfry.

No dobrze - zapyta ktoś - ale po co otrzymywać pochodną benzenową przez anilinę, którą trzeba poddawać przynajmniej dwom reakcjom, zamiast przeprowadzić od razu bromowanie benzenu?
No rzeczywiście, moglibyśmy zbromować benzen, i zapewne dałoby się otrzymać tripochodną, problem natomiast tkwi w tym, jaką pochodną byśmy otrzymali. Możliwe są trzy sposoby w jakie trzy bromy mogą się względem siebie rozłożyć na sześcioczłonowym benzenie - 1,3,5; 1,2,4 i 1,2,3. Co więcej, nie jest wcale takie pewne, czy reakcja zatrzyma się nam na pochodnej trzykrotnie podstawionej.
Aby zbromować benzen należy potraktować go Bromem w obecności chlorku żelaza (III) jako katalizatora. Jest to reakcja substytucji elektrofilowej. Gdy bromowałem anilinę nie było potrzeby dodawania jakiś specjalnych katalizatorów, aby z obojętnej cząsteczki Br2 uzyskać elektrofil, wystarczyła bowiem słaba polaryzacja jaką wzbudzał w niej ładunek zaktywowanego pierścienia, aby na jednym z atomów pojawił się ładunek dodatni, przez co chętnie przyłączał się do aktywnych nukleofilowo miejsc w pierścieniu. Benzen natomiast, pozbawiony podstawników, nie jest tak aktywny, dlatego trzeba stosować dodatki, zwiększające ładunek na atomie bromu.
Chlorek żelaza FeCl3 jest słabym kwasem Lewisa, może więc tworzyć kompleks z bromem. W reakcji z cząsteczką bromu, po przyłączeniu jednego z bromów do jonu kompleksowego, drugi tworzy nietrwały addukt: FeCl3Br.....Br+. Ładunek dodatni jest tu silniejszy. Właściwie jest to jakby kation bromowy. Będąc silnym elektrofilem może podłączyć się do pierścienia, tworząc monopochodną.
Dopiero teraz zaczyna się robić ciekawie. Podstawnik Br- ma trzy wolne pary elektronowe, które mogą przechodzić na pierścień wskutek efektu mezomerycznego. Jego działanie na pierścień jest takie samo jak w przypadku choćby fenolu, dlatego jako że już podawałem tu rysunki takich struktur dla aniliny i dla fenolu nie widzę potrzeby tworzenia ich również w tym przypadku. Następne atomy bromu będą się więc podstawiały w pozycjach orto i para względem pierwszego podstawionego, choć z powodu jego dużej elektroujemności przyciągającej bliżej ładunek, najbardziej prawdopodobne będą obie pozycje orto, zatem otrzymamy 1,2,3-tribromobenzen. Dalej prowadzone bromowanie da nam ostatecznie heksapochodną, natomiast produktu o podstawnikach ułożonych tak jak na obrazku, w ten sposób nie otrzymamy.

Chemik czasem musi iść w swych syntezach drogami, które zdają się bardzo okrężne, a jednak często są to jedyne możliwe sposoby otrzymania dokładnie tego co sobie zamierzył.

Tak więc otrzymałem taką pochodną aniliny, w jakiej podstawniki ułożone są we właściwym porządku - teraz należałoby zrobić coś z grupą aminową. W jaki sposób?
Najlepszy sposób na pozbycie się tej grupy, to jej przekształcenie w sól diazoniową a następnie jej rozkład.

Sole diazoniowe to związki, w których cząstka organiczna połączona jest z grupą składającą się z dwóch atomów azotu, połączonych wiązaniem potrójnym. Ponieważ jeden z tych atomów jest jeszcze połączony z cząsteczką organiczną, a ma trzeci stopień utlenienia, to na grupie pojawia się ładunek dodatni, zwykle równoważony jakimś anionem - dlatego są to faktycznie sole jonowe
Są to związki dość nietrwałe - o ile sole arenodiazoniowe można jeszcze wydzielić w stanie czystym i przechowywać w niskich temperaturach, o tyle alkilowe bardzo szybko się rozkładają, wręcz wybuchowo. Szukając informacji do tej notki natknąłem się na opis wypadku w fabryce, gdzie robotnika zabił wybuch kubła farby, wywołany gwałtownym rozkładem bromku 2,4,6-tribromofenylodiazoniowego, jaki zgromadził się w pozostawionym na dłuższy czas naczyniu[2]. Informacja ta bardzo mnie zaciekawiła, bo taki właśnie związek otrzymałem pośrednio w trakcie syntezy. Są to związki bardzo ważne w syntezie organicznej, bo grupa diazoniowa łatwo ulega wymienieniu na wiele innych podstawników, i to w warunkach znacznie mniej agresywnych niż normalnie, z dużą selektywnością.

Samo otrzymywanie soli diazoniowych jest względnie proste - wystarczy dodać do aminy kwas azotowy (III). Jako że sam kwas azotawy (wg. starej nomenklatury) jest bardzo nietrwały, otrzymuje się go in situ poprzez zakwaszenie mocnym kwasem azotanu III sodu. Reakcję powinno się przeprowadzać w niskich temperaturach, aby zapobiec rozkładowi soli, jednak w tym przypadku rozkład był tym, na czym mi zależało. Bo gdy rozkłada się grupa diazoniowa, powstała w miejscu aminowej, powstaje wolny azot i pozbawiona podstawnika cząsteczka organiczna - na przykład nasz produkt, wedle wzoru:

Usuwanie grupy aminowej
I tak powstaje tribromobenzen. A jak się mi to robiło?

Do kolbki dwuszyjnej wlałem produkt z poprzedniego etapu rozpuszczony w rektyfikacie, dolałem odpowiednią ilość kwasu siarkowego i ustawiłem na łaźni wodnej. Do górnego wylotu kolby podłączyłem chłodnicę zwrotną, boczny wylot tymczasowo zatkałem szklanym korkiem. Moja aparatura wyglądała tak (na zdjęciu kolba jest w koszyczku grzejnym, ale potem zamieniłem go na łaźnię, bo się za bardzo grzał)


Aparatura
Podgrzałem zawartość do wrzenia i ostrożnie, małymi porcjami, dodawałem odmierzoną ilość azotynu sodu. Mieszanina burzyła się intensywnie a nawet pryskała, pod wpływem wydzielającego się azotu (nauczyciel opowiadał nem, że mieszanina parokrotnie już wytrysnęła przez wylot chłodnicy, skazując studenta na mycie całego wyciągu)

Burzy się
Po pewnym czasie, gdy zawartość przestała się burzyć, a cały azotan został już dodany, ochłodziłem kolbę i wylałem mieszaninę na dużą ilość wody. Następnie przesączyłem przez lejek Buchnera, otrzymując intensywnie pomarańczowy, igiełkowaty proszek, o miłym zapachu:


1,3,5-Tribromobenzen
Ostateczna wydajność okazała się bardzo dobra. Miałem otrzymać 1 gram, a po dodatkowym oczyszczeniu przez krystalizację z rektyfikatu, uzyskałem dokładnie tyle czystego związku.

Ponieważ zaliczyłem pewne zaległe kolokwia, w najbliższym czasie zrobię zaległe preparaty, ale opisy tych syntez pojawią się już w wakacje, po sesji.

-----
Źródła:
[1]
Vogel Arthur Israel, Preparatyka organiczna, WNT 1984,
[2] http://www.crhf.org.uk/incident12.html


poniedziałek, 23 maja 2011

Synteza dwuetapowa I : otrzymywanie 2,4,6-tribromoaniliny

Ponieważ tą syntezę przeprowadzałem w dwóch etapach, również dwuczęściowa będzie notka na ten temat. Celem tej syntezy, było przeprowadzenie Aniliny w 1,3,5-tribromobenzen, przy czym reakcja została rozbita na dwie części:
I - otrzymanie z Aniliny jej tribromopochodnej
II - otrzymanie z produktu poprzedniej reakcji, tribromopochodnej benzenu
Musiałem tak dobrać ilości reagentów, aby otrzymać około 1 g końcowego produktu. Zanim jednak opowiem jak do tego doszło, omówię wyjściowe związki:

Anilinę omawiałem już pokrótce w notce o otrzymywaniu benzylidenoaniliny, jednak powtórzę: jest to najprostsza amina aromatyczna, w której do jednego z węgli pierścienia benzenowego przyłączona jest grupa -NH2 . Ma postać bezbarwnej cieczy o zapachu nieświeżych ryb. Jest toksyczna, powoduje rozpad czerwonych krwinek, i łatwo wchłania się przez skórę - dlatego podczas pracy z nią nosiłem rękawiczki. Jednak dla chemika najważniejsza jest jej reaktywność.
Anilina jest pod tym względem podobna do fenolu, gdyż i tutaj zachodzi zaktywowanie pierścienia i ułatwienie ataku elektrofilowego w reakcjach substytucji. Wskutek efektu mezomerycznego, wolna para elektronowa z atomu azotu grupy aminowej może przechodzić na pierścień, tworząc trzy możliwe struktury, w których nadmiarowy ładunek ujemny pojawia się w trzech pozycjach:

Struktury mezomeryczne aniliny
dlatego też podstawniki podstawiają się w tych miejscach, tworząc orto i para pochodne. Jednak anilina jest w reakcjach znacznie bardziej reaktywna. Gdy nitrowałem fenol, musiałem potraktować go stężonym kwasem i przez dłuższy czas mieszać, również dla bromowania wymagane są specjalne warunki, a i tak najpierw otrzyma się monopochodne a dopiero przy dalszym bromowaniu powstaną pochodne bardziej podstawione. Natomiast w przypadku aniliny od razu otrzymujemy pochodną podstawioną w trzech miejscach i nie musimy stosować agresywnych reagentów - natomiast otrzymanie pochodnej z jednym podstawnikiem wymaga całkiem innych niż tu przedstawione, specyficznych reakcji .

Brom

Brom to niemetaliczny pierwiastek chemiczny z grupy fluorowców, mający w temperaturze pokojowej postać brunatnej, łatwo lotnej cieczy - jako drugi pierwiastek po rtęci - wydzielającej cięższe od powietrza, brązowe opary o ostrym, niemiłym zapachu. Stąd zresztą wywodzi się jego nazwa - łacińskie bromos znaczy "smród". Osobiście nie kojarzyłem tego zapachu z niczym konkretnym, był ciężki, nieprzyjemny, ostry niczym chlor ale nie tak świdrujący w nosie. Nawąchałem się go podczas pracowni, aż zaczęło mi się kręcić w głowie - nic zresztą dziwnego, jest bowiem równie jak chlor trujący, a w postaci ciekłej powoduje ciężkie, trudno się gojące oparzenia skóry, stąd praca w rękawiczkach i pod wyciągiem.

Brom ma postać cząsteczek dwuatomowych, lecz chętnie tworzy aniony. Stąd pytanie - skoro tworzy aniony, a więc postać obdarzoną ładunkiem ujemnym, to dlaczego reaguje w substytucji elektrofilowej? Powinien przecież chętniej oddawać jeden nadmiarowy elektron, niż przyjmując podczepiać się do czegokolwiek. Gdy się tak zastanowić, jest to pytanie jak najbardziej słuszne. Gdy nitrowałem fenol, kwas azotowy i siarkowy reagowały ze sobą, dając nietrwały ale dodatnio naładowany kation nitroniowy (NO2+), tutaj natomiast wykorzystywał będę praktycznie tylko sam brom. Otóż jak już pisałem, tworzy on cząsteczki dwuatomowe. Gdy taka cząsteczka zbliży się do pełnego elektronów pierścienia benzenowego, nastąpi jej częściowa polaryzacja - na jednym atomie pojawi się mały ładunek ujemny a na drugiej mały ładuneczek dodatni. To wystarcza, aby jeden atom bromu mógł podstawić się do miejsc z zagęszczonym ładunkiem ujemnym, wypychając wodór, który z drugim bromem utworzy bromowodór, ogółem zatem reakcja przebiegnie tak:
Bromowanie aniliny
I tak oto powstaje nasz półprodukt.

U Vogla* pojawiają się dwie metody prowadzenia syntezy. Pierwsza wymagała złożenia aparatury złożonej z dwóch kolb dwuszyjnych. W jednej kolbie znajduje się brom, zaś rurka odchodząca od bocznego wylotu tej kolby, prowadzi do drugiej, gdzie zanurzona jest w roztworze aniliny w kwasie octowym lodowatym. Boczny wylot drugiej kolby połączony jest z pompką wodną wytwarzającą podciśnienie. Ogółem zatem rzecz miała wyglądać następująco: w kolbie z bromem, włożonej do miski z ciepłą wodą powstają opary gazowego pierwiastka, które następnie są zasysane i wprowadzane bezpośrednio do aniliny w drugim naczyniu. Reakcja miałaby być prowadzona aż do zażółcenia mieszaniny w drugiej kolbie. Byłby to proces trwający około 2 - 3 godziny (przy przepisowej ilości składników) i z wydajnością 63%. Nie mam nigdzie rysunku aparatury i mam nadzieję, że czytelnik jakoś rzecz sobie wyobraził. Nie mam też zdjęcia, bo tego przepisu nie realizowałem, zająłem się drugim podawanym sposobem, będącym znacznie prostszym, szybszym i wydajniejszym. A zatem:

Rozpuściłem w zleweczce odpowiednią ilość aniliny w czterokrotnej objętości stężonego kwasu octowego, służącego za rozpuszczalnik. Z kwasem octowym wymieszałem też płynny brom i umieściłem we wkraplaczu. Do zlewki wrzuciłem mieszadełko magnetyczne, włożyłem ją do krystalizatora napełnionego wodą z lodem i postawiłem na mieszadle. Moja nieskomplikowana aparatura wyglądała zatem tak:
Aparatura
Teraz należało zatem włączyć mieszadło, odkręcić kurek wkraplacza i po wlaniu całej ilości odczekać jakiś kwadrans aż całość się dobrze rozmiesza, przyjmując postać brązowo-pomarańczowej pasty:
Miesza się
Po zakończeniu reakcji zawartość zlewki wylałem na dużą ilość wody a następnie całość przesączyłem pod zmniejszonym ciśnieniem przez lejek Buchnera, kilkukrotnie przemywając wodą dla usunięcia resztek bromu.

Po wysuszeniu tribromoanilina miała postać miałkiego, białego proszku, przypominającego talk:
2,4,6-trobromoanilina

Zaletą tak prowadzonej reakcji, oprócz krótkiego czasu i łatwości przeprowadzania, jest też wydajność - składniki reagują ze sobą ilościowo, co oznacza że cała użyta anilina powinna zostać zbromowana. I rzeczywiście, otrzymałem tyle produktu ile wynikałoby z obliczeń a nawet i trochę więcej, co przypisuję temu, że mając na uwadze małą wydajność moich poprzednich syntez, zaokrąglałem ilości reagentów gdy je odmierzałem.

I tak z głową ciężką od smrodliwego bromu, skończyłem pierwszy etap syntezy. A jak to było z drugim etapem i po co to całe zamieszanie, objaśnię w następnym wpisie.
----
Źródła:
* Vogel Arthur Israel, Preparatyka organiczna, WNT 1984, s. 592-3

Zdjęcia moje. Co do rysunku mezomerii aniliny - nie znalazłem dobrego w internecie, więc przerobiłem w Paincie rysunek mezomerii fenolu, który wykorzystałem w poprzednich wpisach

wtorek, 26 kwietnia 2011

Ostatnio w laboratorium...

Elektrolizer


Po prawej - osadzona miedź, po lewej - czysta elektroda
Elektroliza roztworu Siarczanu (VI) miedzi, przy użyciu siateczkowej elektrody platynowej. Pomiar natężenia prądu co minutę przez półtorej godziny...

poniedziałek, 11 kwietnia 2011

Otrzymywanie benzylidenoaniliny

Mimo pewnych zaległości udało mi się zrobić kolejny preparat. Oczywiście udokumentowałem ten fakt, aby móc sporządzić nową notkę. Tym razem wytworzyłem Benzylidenoanilinę.

Benzylidenoanilina, czy też dokładniej N-benzylidenoanilina, to związek organiczny, należący do klasy Imin, a więc związków w których atom azotu, połączony jest wiązaniem podwójnym z atomem węgla, tworząc analog grupy karboksylowej. W odróżnieniu od tlenu, azot jest trójwiązalny i wiąże jeszcze jeden podstawnik, którym może być wodór, lub grupa alkilowa - w tym ostatnim przypadku, Iminy nazywane są też zasadami Schiffa.
Zasady Schiffa są zasadami w sensie Lewisa, jako że azot posiada wolną parę elektronową, mogą zatem stać się ligandami silnie zabarwionych kompleksów z metalami ciężkimi, co pozwala wykorzystać je w kolorymetrycznym oznaczaniu tych pierwiastków.

Iminy łatwo można wytworzyć w reakcji kondensacji aldehydów lub ketonów z aminami pierwszorzędowymi. Znalazłem, że ten typ reakcji powinien być nazywany z angielska "Alkylimino-de-oksy-bisubstitution", ale w języku polskim nazwa najwyraźniej nie jest używana i nie ma swego odpowiednika[1].

Reakcja przebiega dwuetapowo:

Pierwszym etapem jest addycja nukleofilowa do węgla w grupie karbonylowej. Ponieważ tlen jest znacznie bardziej elektroujemny od węgla, następuje polaryzacja wiązania między nimi, tak, że na tlenie pojawia się cząstkowy ładunek ujemny a na węglu cząstkowy ładunek dodatni.
Aminy pierwszorzędowe posiadają wolną parę elektronową na atomie azotu, stanowiąc nukleofil - a więc odwrotnie od już omawianych elektrofili, chętnie oddające ładunek ujemny.
Następuje atak nukleofilowy na węgiel grupy karbonylowej:



Tworzy się nietrwały produkt pośredni, w którym następuje przegrupowanie z przeniesieniem aminowych atomów wodoru na tlen. Powstaje grupa HOH będąca dobrą grupą opuszczającą.
A teraz następuje drugi etap, czyli eliminacja powstałej cząsteczki wody. I tak mamy iminę.

Synteza, którą przeprowadzałem na zajęciach, przebiegała właśnie w ten sposób. Substratami reakcji był aldehyd benzoesowy i anilina. Co to za substancje?

Aldehyd benzoesowy, inaczej benzaldehyd to żółtawa, oleista ciecz o intensywnym zapachu migdałów. Nic zresztą dziwnego - występuje w naturze w pestkach owoców i w migdałach, w formie pochodnej glikozydowo-cyjankowej zwanej Amigdaliną która ulega powolnej hydrolizie, na benzaldehyd, glukozę i cyjanowodór, który zresztą - co ciekawe - również pachnie migdałowo. Rozkład ten następuje także w organizmie, na przykład w żołądku, przez co zjedzenie zbyt dużej ilości gorzkich migdałów, może mieć negatywne następstwa zdrowotne.

Anilina to najprostsza amina aromatyczna. Grupa aminowa, będąca w zasadzie cząsteczką amoniaku pozbawianą jednego z wodorów, jest połączona bezpośrednio z pierścieniem aromatycznym. Przez obecność na azocie wciąż wolnej pary elektronowej anilina ma właściwości zasadowe (w ujęciu Lewisa), mogąc przyjąć proton, stąd też łatwo tworzy sole amoniowe (np. chlorowodorek aniliny). Ma postać bezbarwnej cieczy o niemiłym zapachu (specjalnie nie wąchałem, ale podobno śmierdzi rybami). Jest silną trucizną, powodującą rozpad czerwonych krwinek, może wchłaniać się przez skórę.

Gdy uczyłem się jeszcze w lubelskim technikum chemicznym, prowadząca zajęcia opowiadała nam historię uczennicy, która zajmowała się destylacją aniliny. Podczas rozbierania sprzętu niechcący oblała sobie spodnie resztką destylatu z chłodnicy, ale tylko wytarła to fartuchem i nic nie powiedziała. Dopiero w domu poczuła się słabo, a jej rodzice zauważyli, że zsiniały jej usta, co jest jednym z objawów zatrucia. Oczywiście ją odratowano. Jestem pewien, że każdy nauczyciel ma na podorędziu takie umoralniające opowieści, mające przestrzegać przed zapominaniem o regulaminie. Niektóre mogą być nawet prawdziwe.

Reakcja przebiega wedle omawianego już schematu w następujący sposób:
Anilina + Benzaldehyd = Benzylidenoanilina
A teraz czas na właściwą relację:

Odmierzyłem anilinę i benzaldehyd wedle przepisu[2]:

Benzaldehyd
Oba płyny wlałem do kolbki kulistej na 50 ml, po czym mieszałem przez kwadrans. Zawartość kolby przybrała kolor żółty, mętniejąc od wydzielającego się produktu. Równocześnie mieszanina zagrzała się, zaparowując kolbkę, co wyglądało tak:

Podczas syntezy
Gdy minęło przepisowe 15 minut, zawartość kolby przelałem do zlewki ze spirytusem rektyfikowanym, w którym rozpuściła się, tworząc żółty roztwór. Zlewkę chłodziłem w krystalizatorze z wodę i mieszałem, czekając aż wykrystalizuje. Czekałem, aż wykrystalizuje i mieszałem i mieszałem, aż dorzuciłem do krystalizatora lodu i dalej mieszałem. Mieszałem i czekałem, i w końcu zaniepokoiłem się, że może coś nie wyszło, bo produkt dalej nie krystalizował. W końcu postanowiłem zdrapać, trąc o brzeg zlewki, osad jaki pojawił się na bagietce w miejscu gdzie krople roztworu wyparowały, i wrzucić te okruchy jako zarodki krystalizacji. Pomysł okazał się dobry, bo gdy tylko zamieszałem, zawartość zgęstniała niczym kaszka z mlekiem.


Wykrystalizowany produkt
Teraz pozostawało tylko przesączyć to przez lejek Buchnera, otrzymując lekko żółtawą "kaszę":

Benzylidenoanilina
Benzylidenoanilina to ciało stałe, o gęstości 0,956 g/cm³, nierozpuszczalną w wodzie. Działa drażniąco na skórę i błony śluzowe. inna metodą otrzymywania, może być redukcja N-benzylo-N-nitrozoaminy, co jest jednak procesem długotrwałym i mało wydajnym.[3]
Oprócz zastosowań specyficznych, np. do syntezy kompleksów, służy do otrzymywania innych związków benzylowych. Natknąłem się również na opis ekstrakcyjnego oddzielenia mikrośladów Renu z mieszanin z innymi metalami szlachetnymi, za pomocą benzyloaniliny zmieszanej z chloroformem, jako rozpuszczalnika. [4]

Edit:
Gdy po tygodniu wyjąlem preparat z szafki, okazało się, że zbrązowiał:
co mu się podobno może zdarzyć. Wydajność jednak wyszła mi dość niska, bo 50% teoretycznej, mimo to prowadzący zajęcia był zadowolony, bo związek był mu akurat potrzebny do czegoś innego.
Teoretyczna temperatura topnienia to 52 stopnie, mi zaś wyszedł przedział 49-51, co jest jeszcze dobre. Przy okazji zauważyłem, że brązowa warstewka topi się już w 46 stopniach.
---
[1] http://en.wikipedia.org/wiki/Alkylimino-de-oxo-bisubstitution
[2] Mieczysław Mąkosza
"Synteza organiczna" PWN, Warszawa 1972r
[3] www.lookchem.com/N-Benzylideneaniline/
[4]
M.M.Khosla & S.P.Rao, Analytical separation of rhenium by extraction with n-benzylaniline in chloroform from sulphuric acid media, Analytika Chimika Acta - podobną metodą ekstrahuje się inne rzadkie pierwiastki
* http://pl.wikipedia.org/wiki/Amigdalina
*http://en.wikipedia.org/wiki/Imine

niedziela, 20 marca 2011

Otrzymywanie o i p-nitrofenolu

Jak tu już obiecywałem, zajmę się teraz opisem, a właściwie relacją, z przeprowadzonej na zajęciach syntezy. Będzie to prosta, jak na możliwości chemii organicznej preparatywnej, reakcja nitrowania fenolu, i otrzymanie Orto-nitrofenolu i Para-nitrofenolu. Na początek jednak warto objaśnić pewne podstawowe pojęcia:

Fenol to pochodna benzenu (C6H6), związku aromatycznego, którego cząsteczka ma postać zamkniętego sześciobocznego pierścienia. W tym związku jeden z wodorów zastąpiony został grupą hydroksylową OH-, tak jak ma to miejsce w alkoholach, jednak własności fenolu różnią go od nich dość istotnie. Tlen z grupy hydroksylowej jest związany z pierścieniem znacznie silniej niż z wodorem, przez co ten stosunkowo łatwo się odszczepia, nadając fenolowi lekko kwaśny odczyn - dlatego też dawniej nazywano go Kwasem Karbolowym i z uwagi na silne właściwości bakteriobójcze używano jako pierwszego szpitalnego antyseptyka. Jest trujący i drażniący. W kontakcie ze skórą może powodować opatrzenia i martwice naskórka - co skądinąd wykorzystuje się w plastrach na kurzajki.
Znaczna różnica w elektroujemności między węglem (2,5) a tlenem (3,5) powoduje polaryzację wiązania i przesunięcie części ładunku na tlen - mówimy wówczas o "ujemnym efekcie mezomerycznym" bo tlen niejako "wyciąga" z pierścienia elektrony, powodując zaktywizowanie reaktywności. Równocześnie zachodzi proces odwrotny - jedna z wolnych par elektronowych tlenu może przeskakiwać na pierścień, tworząc nietrwałą strukturę jonową, z ładunkiem ujemnym na pierścieniu[1]. Jednak zaistniały ładunek nie jest ulokowany w jednym miejscu, lecz może przemieszczać się po pierścieniu, zajmując trzy równoważne pozycje:


Struktury mezomeryczne fenolu
Fakt ten decyduje nie tylko o dużej trwałości związku, lecz również o specyfice reakcji którym ulega, przede wszystkim zaś o tym gdzie i jak chętnie przyłączać się będą doń podstawniki.

Nitrowanie jest reakcją substytucji elektrofilowej, polegającej na zastępowaniu jednego z wodorów podstawnikiem, mającym właściwości elektrofila. Taki podstawnik ma niedomiar elektronów, i bardzo "lubi" przyłączać wszelkie dostępne. W tym przypadku elektrofilem jest nietrwały jon nitroniowy (NO2+) powstający w reakcji kwasu azotowego (V) z kwasem siarkowym (VI). A gdzie w fenolu mamy łatwo dostępny elektron? - tam gdzie w strukturach mezomerycznych pojawia się ładunek ujemny. Struktury takie, jak widać na powyższym obrazku, są trzy, dlatego też podstawić się mogą maksymalnie trzy grupy nitrowe i to wyłącznie w dokładnie określonych pozycjach.
W przypadku sześciowęglowego fenolu grupa nitrowa może połączyć się z węglem o numerach 2 (licząc węgiel połączony z grupą hydroksylową jako 1) lub 4 lub 6 - ponieważ jednak dla jednej grupy pozycje 2 i 6 są identyczne, uznaje się, że utworzyć się mogą tylko dwa różne związki: 2-nitrofenol i 4-nitrofenol. Dla pochodnych benzenu stosuje się nazewnictwo przypisujące danemu układowi przedrostek w nazwie, mianowicie Orto- dla położenia przy drugim węglu, Meta- dla węgla trzeciego i Para- dla węgla czwartego. Stąd nazwy: Orto-nitrofenol dla 2-nitrofenolu i Para-nitrofenol dla 4-nitrofenolu.

Na tym jednak nie koniec. Prowadząc nitrowanie konsekwentnie dalej otrzymamy dalsze pochodne, aż do trinitrofenolu zawierającego trzy grupy nitrowe przy węglach 2, 4 i 6. Związek ten to kwas pikrynowy, będący bardzo silnym materiałem wybuchowym. Związkiem bardzo do niego podobnym jest potrójnie znitrowany toluen - będący również prostą pochodną benzenu - w skrócie TNT. Jednak kwas pikrynowy, w odróżnieniu do Trotylu, jest bardzo nietrwały, wybucha od uderzenia, zgniecenia czy nawet nadmiernego podgrzania, dlatego z rzadka używa się go w charakterze spłonki, zaś wytworzenie większej ilości podczas syntezy, przynieść może nieprzewidziane skutki.


W zasadzie więc otrzymujemy dwa związki tego samego rodzaju i o takim samym wzorze sumarycznym, a jednak różnica pomiędzy nimi jest dość istotna. W przypadku izomeru orto, atom wodoru z grupy hydroksylowej leży blisko tlenu z grupy nitrowej i może pomiędzy nimi zachodzić słabe oddziaływanie nazywane wiązaniem wodorowym. W izomerze para taka sytuacja jest niemożliwa, a to z powodu zbytniego oddalenia grup. Wiązania takie mogą się jednak tworzyć między grupami hydroksylowymi jednych cząsteczek a grupami nitrowymi innych cząsteczek, przez co w ciele stałym tworzy się molekularna sieć. Fakt ten wpływa dość istotnie na właściwości fizyczne obu izomerów.
Wedle literatury [2] izomer para- topi się w temperaturze 112 °C, natomiast izomer orto- w zaledwie 46 °C - tak duża różnica jest spowodowania właśnie różną siłą związania cząsteczek ze sobą. No dobrze, mamy dwa związki, otrzymujemy je razem, w mieszaninie, i jak je teraz oddzielić? A bardzo prosto, i wykorzystujemy tu inną różnicę właściwości między izomerami - różnicę lotności z parą wodną.
Gdy skierujemy strumień gorącej pary wodnej na mieszaninę związków, jedne będą łatwo się wraz z nią ulatniać a inne trudno. Do takich łatwo lotnych nalezą olejki eteryczne kwiatów i innych części roślin, co pozwala na ich otrzymanie w stanie czystym, nadającym się do stworzenia zapachowej kompozycji perfum. Orto-nitrofenol z powodu luźniejszej struktury nie tylko jest łatwo topliwy ale i łatwo lotny, i można go oddzielić z wystarczającą selektywnością.

Po tym ogólnym wstępie czas na właściwą relację:

Wziąłem fenol mający postać jasnoróżowego proszku o bardzo intensywnym zapachu lizolu i stopiłem go z niewielką ilością wody. Do dwuszyjnej kolby wlałem stężony kwas siarkowy i chłodząc w krystalizatorze z wodą wsypałem Azotan (V) sodu, otrzymując mieszaninę nitrującą. Do środka wrzuciłem również mieszadełko magnetyczne, wyglądające jak podłużna tabletka, będące małym magnesikiem, i umieściłem na mieszadle. Gdy włączy się takie mieszadło, mały magnesik w kolbie zaczyna wirować, mieszając równomiernie ciecz i wyręczając chemika, który musiałby robić to ręcznie. Wygląda to tak.


Fenol

Do kolby podłączyłem duży wkraplacz i przelałem do niego stopiony fenol, mający postać malinowego płynu. Przez drugą szyję wprowadziłem termometr i zacząłem wkraplać płyn, cały czas sprawdzając czy temperatura nie przekracza 20 °C, w przeciwnym wypadku dolewałem do krystalizatora wodę lub dorzucałem lodu. Ta kontrola temperatury była potrzebna aby uzyskać tylko jednokrotnie znitrowany fenol, w wyższych bowiem powstaje wspomniany kwas pikrynowy, będący wszakże związkiem wybuchowym. Prowadzący zajęcia opowiadał nam, jak to kiedyś jedna ze studentek zagapiła się, i kolba się jej rozprysnęła w trakcie zajęć.
Gdy temperatura się ustabilizuje, a cały fenol zostanie dodany, zawartość kolby musi się mieszać i mieszać. Musi się mieszać bardzo i mieszać długo. Mieszać równomiernie i mieszać aż do znudzenia - dokładnie przez dwie godziny.

Gdy zawartość się już wymiesza i przereaguje, trzeba ją odstawić aż produkty, mające postać bordowo-brunatniej żywicy, oddzielą się od kwaśnego roztworu. Zawartość kolby wygląda wówczas tak:
Zawartość kolby po nitrowaniu

Kwaśny roztwór należy odlać i zmajstrować zestaw do destylacji z parą wodną. W mojej wersji wyglądał tak:



Zestaw do destylacji z parą wodną

A więc od lewej: kociołek do wytwarzania pary, mający wygląd metalowej butelki, stojący na palniku; szklana rurka zanurzona w kociołku o wolnym końcu, mająca zabezpieczać przed nagłymi skokami ciśnienia; specjalne doprowadzenie, wprowadzające strumień pary na dno kolbki; nasadka łącząca kolbkę z chłodnicą; chłodnica wodna Liebiega, będąca rurką otoczoną płaszczem w którym płynie zimna woda; i wreszcie odbieralnik, czyli zlewka na podwyższeniu, do której skapuje destylat. Bardziej czytelny rysunek.

Oddzielający się o-nitrofenol miał postać żółtego płynu. Gdy destylat stał się bezbarwny odstawiłem zlewkę na parapet aby produkt wykrystalizował. Miał postać długich, żółtych igiełek. Należało teraz przesączyć ciecz na lejku Buchnera pod zmniejszonym ciśnieniem, i na sączku został niemal czysty o-nitrofenol:


A co z p-nitrofenolem? Vogel, z którego "Preparatyki Organicznej" brałem przepis, podaje że pozostałość, po ochłodzeniu i odsączeniu, należy ogrzewać w temperaturze wrzenia z kwasem solnym i węglem aktywowanym, dla usunięcia barwnych zanieczyszczeń, przesączyć a przesącz odstawić do krystalizacji. Tego jednak na zajęciach nie robiłem. 
P-nitrofenol również ma postać jasnożółtego proszku, krystalizującego w postaci igiełek. W toku dalszych przemian można otrzymać z niego popularny lek przeciwgorączkowy - Paracetamol - stąd znaczenie jakie ma opisana synteza w przemyśle.


Gdy już otrzymało się preparat, należy go zważyć dla sprawdzenia sprawności preparowania. Vogel podaje sprawność 36%, lecz mi wyszło blisko cztery razy mniej. Najprawdopodobniej jest to wynik przegrzania, zbytnio bowiem szybko wkraplałem fenol do kolby, i nim lodem schłodziłem ją odpowiednio, temperatura podskoczyła do 30 stopni, więc część związku uległa dalszemu nitrowaniu a może i utlenieniu.

Dodatkowo należy zbadać, czy aby na pewno otrzymaliśmy dobry związek. O tym jak ważne może być takie sprawdzanie, przekonałem się będąc kiedyś na wycieczce szkolnej w laboratorium analizy elementarnej, gdzie usłyszałem anegdotę o doktorancie, który po kilku miesiącach skomplikowanej analizy dał im próbkę do potwierdzenia składu, i okazało się, że to nie to. Gdzieś popełnił błąd.

Taką prostą i szybką metodą jest porównanie temperatury topnienia otrzymanego związku z podawaną w literaturze. Aby to zrobić należy nabić niewielką ilością związku zatopioną z jednego końca kapilarkę:

Kapilarka nabita związkiem
 Aparatura do pomiaru jest nieskomplikowana, kapilarkę ze związkiem wsuwa się do podświetlanej komory z regulowanym ogrzewaniem, w której tkwi termometr. Kapilarkę obserwujemy przez okular. Podwyższamy powoli temperaturę i gdy kryształki zaczną się szklić, to jest nasączą się cieczą, sprawdzamy temperaturę i zapisujemy. Gdy związek całkowicie się stopi zapisujemy drugą temperaturę, otrzymując pewien przedział, w którym powinna się mieścić temperatura literaturowa.

W moim przypadku temperatura ta powinna wynosić 46 °C, jednak przedział jaki zmierzyłem, nie zgadzał się z tymi danymi - wyniósł 36-40 °C. Najpewniej to wynik wspomnianego przegrzania.

Komora topnienia. Po prawej - związek stały, po lewej stopiony.

Jednak pomiar temperatury jest jak widać niewystarczający, dlatego pozostałą część substancji bada się spektrometrycznie za pomocą aparatury NMR. Jeśli w otrzymanym wykresie występują takie piki jakie podaje literatura, to mamy pewność, że rzeczywiście otrzymaliśmy związek jaki był nam potrzebny.
 
I tak skończyłem syntezę. Należało tylko zmienić ubranie i wykąpać się, bo zaśmiardłem fenolem jak ze szpitala.

---------------------
Przypisy:
[1] - Zwykle obrazuje się to jako przeskok elektronu i pękniecie jednego z wiązań podwójnych pierścienia. Ponieważ do utworzenia wiązania potrzebne są dwa elektrony, po jego pęknięciu zostaje jeden niesparowany, stanowiący ów wolny ładunek. Ponieważ jednak trzy wiązania podwójne są rozmyte na cały pierścień, i każde jest niejako półtorakrotne, rzeczywista sytuacja jest trochę trudniejsza do opisu i sprowadza się do zwiększenia gęstości ładunku ujemnego w trzech miejscach.

[2] - Vogel Arthur Israel, "Preparatyka organiczna" Wydawnictwo WNT 2006 Wydanie III zmienione. - Gruba, ponad tysiącstronnicowa kniga, prawdziwa biblia preparatyków. Wszystkie dane i odniesienia dotyczą tego wydania.

Ilustracje wzorów pochodzą z Wikipedii. Zdjęcia moje.