informacje



piątek, 13 stycznia 2012

Poison story (1.) - Stalinon



Ponieważ mam w tym roku zajęcia z toksykologii, zaraz na początku roku pożyczyłem grubaśną "Toksykologię Współczesną" i zacząłem sobie ją przeglądać, i oczywiście znalazłem dużo rozmaitych ciekawostek, które zapewne na zajęciach mi się nie przydadzą. Ale na bloga będą pasować akurat.
Wpadłem na pomysł, aby opowieści o tych szczególnych przypadkach - a przy tym o danych truciznach - ubrać w formę bardziej literacką, którą przez analogię do "detective story", "Ghost story" i "crime story" nazwałem "Poison story" - czyli opowieść o truciznach. Pierwsza z moich opowieści będzie mówiła o tym, jak groźny może się okazać dosyć pospolity pierwiastek, jeśli tylko wymknie się spod kontroli i dostanie się w ręce człowieka nieodpowiedzialnego. Rzecz o Cynie.


Na początku czerwca 1954 roku we francuskim mieście Saint-Roman-des-Champs, Micheline Proust, żona tamtejszego rolnika, zauważyła na swej piersi bolesne, ropiejące zaczerwienienie w pobliżu sutka. Udała się do lekarza w Niort, który zdiagnozował czyraczność - zapalenie mieszka włosowego wywoływane przez gronkowca złocistego. Przepisał jej Stalinon, uznany lek na choroby skóry, wprowadzony na rynek przed paroma miesiącami. Zgodnie z zaleceniami zażyła rano dwie pigułki, i dwie następne wieczorem. Jednak z każdym dniem czuła się coraz gorzej. Pojawił się ból głowy, obniżona temperatura, wymioty i trudności z widzeniem. Piątego dnia została przewieziona do szpitala, gdzie stwierdzono obrzęk mózgu. Tego samego dnia zmarła, zaś lekarze uznali, że przyczyną śmierci było zapalenie opon mózgowych.
Wkrótce potem 24-letnia Ivette Lautier z Niort, zauważyła ropnie na ramionach i plecach. Lekarz, ten sam zresztą, zdiagnozował czyraczność i przepisał lek. Pięć dni później Ivette trafia do szpitala z wymiotami, drgawkami, halucynacjami i bólem głowy. Za przyczynę śmierci uznano ponownie zapalenie opon mózgowych. Jednak gdy pod koniec czerwca zmarła 24-letnia Michèle Morin z identycznymi objawami, lekarz szpitala w Niort, dr Alain de Lignières, zaczął mieć wątpliwości. Albo w okolicy pojawiła się epidemia zapalenia opon, albo musiał zadziałać jakiś inny, groźny czynnik. Po przejrzeniu dokumentacji stwierdził, że we wszystkich przypadkach objawy chorobowe pojawiły się tuż po zażyciu Stalinolu, dlatego zaalarmował władze sanitarne o podejrzeniu toksyczności preparatu. Powiadomił też prefekta departamentu Deux-Sevres w którym leży Niort, który jeszcze przed wynikami ponownej autopsji i badań toksykologicznych, nakazał wstrzymać obrót lekiem.
Gdy jeszcze trwały badania o podejrzeniach przeczytał pewien lekarz w Chartres, który wkrótce potem zgłosił policji, że w ostatnim czasie dwóch jego pacjentów u których rozpoznał czyraczność, zmarło kilka dni po zażyciu Stalinonu. Obrót lekiem został wstrzymany w całym kraju.

Zanim jednak opowiem co wykazało dochodzenie, cofnę się trochę bardziej w przeszłość. W 1952 roku, francuski farmaceuta Georges Feuillet, po podróży na Madagaskar doznał licznych, bolesnych ropni, rozsianych po całym ciele. Nie mogąc nic poradzić sobie znanymi metodami, zwrócił się do kolegów; ci poznali że mają do czynienia z czyracznością, rozsianym zapaleniem mieszków włosowych i gruczołów potowych, wywołanych gronkowcami lub paciorkowcami. Jeden z nich polecił Feuilletowi preparat z solami cyny, od dawna używanymi w farmakopei do leczenia grzybic, karbunkułów i innych chorób skórnych. Pomogło.
Farmaceuta, zachęcony tym sukcesem, wiedząc przy tym, że jego choroba nie jest wcale taka rzadka, postanowił wykorzystać sole cyny do stworzenia nowego leku. Już przedtem stworzył kilka preparatów, dlatego uznał, że najwygodniejszą formą użycia będą pigułki. Uznał, że najlepsze będą związki organiczne cyny, które lepiej wchłaniały się do organizmu i dzięki równomiernemu rozprowadzeniu oddziaływały na całą powierzchnię skóry. W tym konkretnym przypadku był to dijodek-dietylenek cyny (DIDE), który dzięki postaci jonowej rozpuszczał się w wodzie, a dzięki obecności łańcuchów etylowych, również w lipidach. Dodał do niego kwas linolowy - wielonienasycony kwas tłuszczowy, stosowany w chorobach skórnych i nazywany wówczas witaminą F. Z połączenia łacińskiej nazwy cyny Stannum i lnu Linim + charakterystyczna dla wielu preparatów końcówka -on, powstał Stalinon.



Feuillet wyprodukował własnym sumptem kilkadziesiąt perełek, zawierających po 15 mg DIDE i 100 mg kwasu linolowego i wysłał do Krajowego Laboratorium Kontroli Leków dla badań, równocześnie przekazał część swojemu znajomemu Mougenot, pracującemu w Klinice Wojskowej w Begin, aby przeprowadził testy medyczne. Ten podał preparat ośmiu pacjentom, stwierdził wyleczenie dolegliwości i nie stwierdził skutków ubocznych. Zaopatrzony w pozytywną opinię znajomego i wyniki badań z laboratorium, Feuillet złożył wniosek do Ministerstwa Zdrowia o wprowadzenie nowego leku. Dla ułatwienia procedur napisał, że jego lek jest jedynie modyfikacją innego preparatu Stanolex zawierającego tlenek cyny, dla którego pozwolenie na produkcję właśnie wygasło i do którego prawa wcześniej wykupił.
Jest aż zadziwiające, że to wystarczyło. Prawo farmaceutyczne we Francji nie stawiało wówczas producentom wielu wymagań. Dlatego mając opinię innego lekarza, który nie stwierdził objawów ubocznych, wyniki badań laboratoryjnych, które nie wykazały toksyczności pigułek dostarczonych przez wnioskodawcę, oraz uznając że wnioskodawca jedynie zmodyfikował lek który wcześniej produkował, w czerwcu 1953 roku wprowadzono preparat do obrotu. Nie wydano żadnych dodatkowych zaleceń ani specyfikacji produkcyjnych. Sama produkcja nie była też specjalnie kontrolowana, nie wymagano okresowych badań partii produktu co dziwi, gdyż zaledwie dwa lata wcześniej w wyniku pomyłki laboranta, wypuszczono na rynek zasypkę dla niemowląt z arszenikiem.
Feuillet zlecił firmie Février Decoisy, specjalizującej się w przemysłowych syntezach, produkcję perełek, gdzie przeprowadzano to metodami na poły chałupniczymi. Substancja aktywna nie była nawet dokładnie rozprowadzona, dlatego niektóre pigułki zawierały ślady DIDE, zaś inne ponad trzy razy więcej niż powinny. Jak wykazało późniejsze śledztwo przemysłowo produkowany DIDE był zanieczyszczony trietylenkiem cyny (TET) w ilości do 1,5 mg na pigułkę, a związek ten jest kilkunastokrotnie bardziej trujący od mało toksycznego dietylenku. Dodatkowo pozbawione powłoczki ochronnej, często z pęcherzykami powietrza wewnątrz masy, pigułki utleniały się, przez co związki cyny nabierały toksyczności. Zauważono to już na etapie produkcji, gdy niektóre pigułki, mające postać żółtawych, półprzezroczystych perełek, mętniały i ciemniały. Aby temu zapobiec po prostu pokryto je brązową otoczką. I przez długi czas nikt nie zauważył żadnego zagrożenia.

Gdy jednak w 1954 roku wybuchła afera, ludzie wpadli w panikę. Początkowo wiedziano o kilkunastu przypadkach śmiertelnych, jednak wkrótce z Algierii dotarła wiadomość o śmierci 7 dzieci, którym podano Stalinol na trądzik, wkrótce też przeprowadzono kilkaset ekshumacji w podobnych, podejrzanych przypadkach. Ostatecznie po trzyletnim śledztwie potwierdzono 107 przypadków śmiertelnych i prawie 150 przypadków ciężkich zachorowań. U części z tych osób wystąpiła trwała ślepota lub porażenie kończyn.
Ostatecznie Gregores Meillet został skazany na dwa lata więzienia za nieumyślne spowodowanie śmierci wielu osób i milion franków grzywny, oraz odebrano mu prawo do wykonywania zawodu. Oskarżony został też dyrektor zakładów produkujących pigułki, jednak zmarł zanim ogłoszono wyrok. Rodziny ofiar uzyskały również odszkodowania na łączną sumę ponad 600 mln franków. Po tych wszystkich przypadkach prawo farmaceutyczne we Francji zostało zaostrzone. Rejestracja nowych preparatów musiała się wiązać z przeprowadzeniem kosztownych badań a produkcja ściśle kontrolowana. Było to jednak zbyt późno aby zapobiec skandalowi związanemu z Talidomidem, który wyszedł na jaw dopiero w roku następnym.

Opakowania preparatu zawierały 50 perełek. © DR.

Cyna jest miękkim, srebrzystym metalem z grupy węglowców, o niskiej temperaturze topnienia, stąd chętnie wykorzystuje się ją do lutowania i pokrywania innych metali. Dzięki połyskowi i odporności na korozję, już w starożytności była chętnie wykorzystywana do odlewania rzeźb, zastawy stołowej i wyrobów artystycznych - niestety nie wiele z nich przetrwało do naszych czasów. Niska temperatura topnienia powodowała, że wyroby chętnie przetapiano, ponadto cynę przerabiano na brązy, znaczcie cenniejsze i bardziej przydatne użytkowo.
Inną przyczyną dla której mało dziś znamy dawnych wyrobów cynowych, jest ciekawe zjawisko korozji fizycznej, nazywanej "trądem cynowym". Jeśli przedmiot z cyny jest przechowywany w niskich temperaturach, na jego powierzchni zaczynają się pojawiać szare plamki, wgryzające się w głąb metalu i powodujące jego zamianę w szarawy proszek. Jeśli proszek ten zetknie się w niskiej temperaturze ze zdrową powierzchnią cyny, metal zostanie "zarażony" i również pokryje się plamkami. Plamki stopniowo powiększają się i łączą aż wreszcie cały przedmiot rozsypuje się w drobny, szary proszek w ciągu jednego lub kilku chłodnych sezonów. Sądzi się, że zjawisko rozsypywania się guzików przy mundurach odegrało dużą rolę w klęsce Napoleona pod Moskwą, choć sama kampania trwała dość krótko.
Cyna, podobnie jak leżący nad nią węgiel, może występować w kilku odmianach alotropowych. W temperaturze pokojowej trwałą odmianą jest cyna β nazywana cyną białą, mającą postać srebrzystego metalu. W tej temperaturze metal składa się z drobnych tetragonalnych kryształków, które przy zginaniu pręta cynowego trą o siebie, wydając charakterystyczny skrzyp, nazywany "krzykiem cyny". Jednak w temperaturze niższej niż 13,2 stopnia C trwalsza staje się odmiana α, będąca kruchą masą nie przewodzącą prądu, o strukturze podobnej do diamentu. Zmiana struktury pociąga za sobą zwiększenie objętości, w efekcie powstająca cyna szara rozpada się na drobny proszek, jak to widać na tej animacji poklatkowej.
W normalnych warunkach przemiana następuje bardzo powoli, gdyż energia kinetyczna potrzebna atomom na przesunięcie się w inne miejsce w sieci krystalicznej, jest dość wysoka, dlatego odmiana beta w temperaturach około zera jest jeszcze metastabilna. Natomiast przy silniejszych mrozach, i w obecności domieszek takich pierwiastków jak German czy Krzem, przemiana znacznie przyspiesza. Również kontakt z kryształkami cyny szarej, stanowiącymi zarodki krystalizacji, przyspiesza reakcję, stąd "zakaźność" procesu. Aby przerwać korozję należy po prostu przenieść przedmioty do wyższych temperatur. W ostatnim czasie, w związku z wycofywaniem stopów ołowiowych z elektroniki, rozsypywanie się i przepięcia na lutowanych czystą cyną stykach stają się coraz powszechniejszym problemem.

Jak jednak jest z toksycznością tego metalu? Czy Stalinol to przypadek szczególny, czy też lepiej się cyny bać?
Związki cyny uważa się ogólnie za mało toksyczne, zwłaszcza wiązki nieorganiczne. Mają działanie bakteriobójcze (wspomniane gronkowce), wirusostatyczne, grzybobójcze, przeciwpasożytnicze i pierwotniakobójcze[1]. Jest uważana za mikro lub ultraelement, choć nie wiadomo czy spełnia jakąś funkcję biologiczną.
Wymieniony wpływ na mikroorganizmy uzasadniałby używanie cyny do produkcji opakowań żywności. Najbardziej znane są tu oczywiście puszki z cynowanej blachy, jednak cyny używano w tym celu już od dawna. Chętnie pokrywano nią od wewnątrz rondle i garnki, zwłaszcza te miedziane, bano się bowiem zatrucia grynszpanem, dlatego druciarze umiejący "bielić" garnki zawsze mieli zajęcie. Samo bielenie garnków odbywało się zresztą w ciekawy sposób, związany z opisaną alotropią - garnek rozgrzewano i wrzucano do niego drobne kawałki metalu, a następnie pocierano nimi o ścianki przy pomocy pakuł. Cyna w temperaturze powyżej 161 st. C ulega przemianie do cyny gamma (γ), która podobnie jak cyna szara łatwo rozpada się do drobnego proszku. Proszek, wcierany w rozgrzany garnek przytapiał się do metalu i pokrywał powierzchnię cienką warstewką.
Metalowe puszki z blachy cynowanej wprowadzono na początku XIX wieku, kiedy to zastąpiły szklane konserwy Apparta. Pierwotnie wieczko puszki było lutowane ołowiem lub stopem cyny z ołowiem, co wywoływało możliwość zatrucia. Prawdopodobnie właśnie niestaranne lutowanie i zatrucie ołowiem było przyczyną klęski wyprawy arktycznej podjętej w 1845 roku przez admirała Franklina, która zaginęła i której losy odtworzono na podstawie odnalezionych później szczątków ekipy. Cynowane puszki są dziś nieco mniej popularne, jednak nadal stanowią dużą część rynku.
Czy jednak cyna nie będzie przenikała do żywności?

Miłośnicy konserw wiedzą zapewne, że takie jedzenie może mieć metaliczny posmak, i rzeczywiście, zależnie od odczynu i rodzaju jedzenia, obserwuje się przechodzenie części cyny do zawartości puszki. Jednak w naszych czasach zostało to w znacznym stopniu ograniczone. Najczęściej blacha cynowa jest dodatkowo pokrywana cienką warstwą lakieru, który zapobiega rozpuszczaniu metalu, choć taka powierzchnia zachowuje właściwości bakteriostatyczne. Wiele dzisiejszych konserw w ogóle jest pozbawionych cyny, poprzestając jedynie na warstewce lakieru. Niektóre puszki, stalowe lub aluminiowe, pokrywa się plastikową folią pełniącą podobną rolę.
Dawniej notowano mniejsze lub większe zatrucia, na przykład wiśniami w zalewie czy ananasem w kwaśnym sosie, obecnie jednak ogranicza się stosowanie cyny w opakowaniach takich produktów. W niedawnym badaniu brytyjskim po zbadaniu stu-kilkunastu produktów różnych producentów nie stwierdzono przekroczeń dopuszczalnej wartości 200 ppm.[2] Teoretycznie trzy razy wyższe stężenie powinno wywoływać biegunki i bóle brzucha, dotyczy to jednak cyny nieorganicznej która bardzo słabo wchłania się do organizmu z przewodu pokarmowego i głównie wywołuje objawy nieżytu żołądkowo-jelitowego . Wskazówką na uwalnianie cyny może być zmiana koloru żywności - na przykład wymiana magnezu na cynę w chlorofilu może zabarwiać zielony groszek na szaro, a w przypadku gruszek obserwowano barwę różową[3]. Oczywiście takiej żywności lepiej nie jeść. Ostatecznie puszkowanie żywności pozostaje wciąż jedną z najlepszych metod przechowywania, nie zmieniającą wartości odżywczych i nie wymagającą stosowania konserwantów.

Innym źródłem cyny mogą być ryby, u których stwierdza się niewielkie stężenie organicznych związków cyny, co często jest związane ze stosowaniem tributylenku (TBT) w farbach zabezpieczających statki przed osiadaniem glonów i skorupiaków. Ostatnio zaczęto jednak wycofywać takie preparaty, stwierdziwszy szkodliwy wpływ na hodowle małż. W niektórych masach plastycznych związki cynoorganiczne dodaje się w charakterze utwardzacza, jednak materiały takie nie powinny być używane do pakowania żywności. Zasadniczo wszystkie związki zawierające wiązanie cyna-węgiel są znacznie bardziej toksyczne niż sole nieorganiczne (wyjątkiem jest cynowodór, równie toksyczny jak cyjanowodór). Główną tego przyczyną jest osłabienie wspomnianego wiązania, w wyniku którego łatwo rozpada się na rodniki. Takie połączenie staje się więc środkiem alkilującym, przyłączającym grupy, w tym przypadku etylenkowe, do innych związków organicznych, głównie białek enzymatycznych. Następują zaburzenia fosforylacji oksydacyjnej w mitochondriach co zaburza metabolizm komórkowy, zmienia się też przepuszczalność błon komórkowych. Ponieważ DIDE i TET rozpuszczają się w tłuszczach, mają skłonność do gromadzenia się w lipidowej tkance nerwowej, wywołując neuropatie, martwice neuronów i bardzo silne obrzęki mózgu.
Rzecz ciekawa, że w badaniach nie stwierdzono aby związki cyny miały działanie rakotwórcze a nawet, w badaniu na dużej liczbie szczurów stwierdzono, że w grupie karmionej karmą ze zwiększoną ilością cyny powstało nieco mniej nowotworów niż w grupie kontrolnej. [4] Potwierdzeniem tych dziwnych wyników może być odkrycie, że niektóre związki cynoorganiczne mają właściwości antynowotworowe i mogą być zastosowane w chemioterapii zamiast cis-platyny, na którą rak może się z czasem uodpornić. O ile wiem badania w tej kwestii jeszcze trwają.

Innym zastosowaniem cyny był staniol - cienka folia używania do pakowania stałej żywności, na przykład czekolady, nazywana pozłotkiem lub pazłotkiem, dziś wyparta przez folię aluminiową. Oczywiście nie licząc możliwości połknięcia kawałka folii przez nazbyt ochoczych smakoszy, cyna z takiego źródła do czekolady się nie przedostawała.
I wreszcie, na koniec, czy powyższa historia może nas czegoś nauczyć? Z pewnością w sprawach zdrowia ostrożności nigdy za wiele. O ile się orientuję mniej niż w przypadku leków rygorystyczne przepisy wciąż obowiązują suplementy diety. Na szczęście nikt z producentów preparatów witaminowych nie wpadł dotychczas na pomysł dodawania mikroelementów w formie metaloorganicznej, i miejmy nadzieję, że nie wpadnie, choć są już suplementy zawierające cynę w charakterze mikroelementu - chociaż jak już pisałem, jakakolwiek biologiczna rola cyny nie jest znana.

-------
Źródła i przypisy:

* http://www.cairn.info/revue-francaise-des-affaires-sociales-2007-3-page-123.htm
* http://time-demo.newscred.com/article/010c6e7482e6251c4446c8f97ab4bf80.html/edit
* "Der Spiegiel" Tod dur Stalinon 11.06.1957
* http://www.juripole.fr/memoires/prive/Sandrine_Husson/partie2.html
* http://en.wikipedia.org/wiki/Tin_pest

[1] http://rozanski.li/?p=64
[2] Tin in canned food: a review and understanding of occurrence and effect. Food Chem Toxicol. 2003 Dec;41(12):1651-62.
[3]
Pink discoloration in canned pears, Agric. Food Volume 21, Issue 6, pages 315–319, June 1970
[4] Toxicity of tin and its compounds. Adverse Drug React Acute Poisoning Rev. 1988 Spring;7(1):19-38.

Polecam też dłuższy artykuł: Toksyczne właściwości Cyny, na stronie portalu Siła Wiedzy

piątek, 6 stycznia 2012

Analiza wody źródlanej "Cisowianka"

Czas chyba aby wrócić tu coś z tego, co wykonywałem na praktykach studenckich w sierpniu tego roku. Jak to już opisywałem, odbyłem je w Laboratorium Ochrony Środowiska Pracy w Siedlcach, a więc w mieście mojej uczelni. Nie miałem tam może jakiś specjalnie efektownych rzeczy do zrobienia, ale zebrałem co nieco materiałów, wartych do przedstawienia.

Podczas jednego z dni, gdy mój prowadzący był nieobecny, aby mieć jakieś zajęcie wykonałem analizę wody mineralnej. Była to akurat Cisowianka.

Cisowianka to, formalnie rzecz biorąc, woda źródlana, nisko zmineralizowana, pobierana z głębokości 100 metrów z pokładów w Drzewcach, koło Nałęczowa. Wprawdzie producent sprzedaje ją jako wodę mineralną, ale zawartość składników mineralnych to tylko 742 mg/l, tymczasem formalnie za mineralną uważa się taką, która zawiera przynajmniej 1g/l . Nazwa ujęcia nawiązuje do uzdrowiska "Cisy" opisanego przez Żeromskiego. Jest to zresztą zabawne, bo opis z Ludzi bezdomnych jest raczej nieprzychylny - Cisy to uzdrowisko wsteczne, prowadzone nieprzemyślane, z którego można było wyjechać bardziej chorym, niż się przyjechało. No cóż, widać nieznajomość literatury nie przeszkadza.

Niestety nie mogłem zrobić pełnej analizy jakościowej i ilościowej, dlatego poprzestałem na badaniu zawartości jonów wodorowęglanowych, wapniowych i magnezowych, a pozostałe składniki oznaczałem jakościowo.

Wodorowęglany:
Zawartość anionów wodorowęglanowych oznaczałem alkacymetrycznie, miareczkując próbkę wody mianowanym kwasem solnym, wobec oranżu metylowego jako wskaźnika.
Dla reakcji:

HCO-3 + H+ CO2 + H2O

jeden mol kwasu reaguje z jednym molem anionów.

Napełniłem więc biuretę mianowanym roztworem HCl o stężeniu 1,02 mol/l, wlałem do kolbki jedną pipetę wody i dwie krople oranżu, po czym bardzo ostrożnie, mając na uwadze nieduże stężenie, po kropli dodawałem kwas aż do momentu, gdy żółty roztwór przybrał kolor pomarańczowy. W tym przypadku wystarczyło 0,85 ml. Dla tak małych ilości błąd oznaczenia może być duży, nie miałem jednak bardziej rozcieńczonego kwasu na podorędziu.
Po przeliczeniu uzyskałem zawartość wodorowęglanów 0,5289 mg/l, co wobec etykietowej 0,5426 mg/l nie było tak dużym błędem.

Wapń:
Oznaczanie wapnia przeprowadziłem kompleksometrycznie, przy pomocy mianowanego roztworu EDTA.

EDTA czyli kwas etylenodiaminotetraoctowy, jest znanym związkiem chelatującym, tworzącym kompleksy z szeregiem metali ciężkich, a nawet z takimi lekkimi jak magnez, wapń czy lit. Posiada aż sześć atomów zawierających wolne pary elektronowe i mogących w związku z tym tworzyć kompleks. Cząsteczka kwasu zwija się, niczym zaciskana pięść, "łapiąc" atom w klatkę. Jeden jon metalu jest kompleksowany przez jedną cząsteczkę EDTA.
Ale po czym wobec tego poznać, że wszystkie jony metalu zostały związane?
W analizie kompleksometrycznej używa się specjalnych wskaźników, które same mogą tworzyć związki kompleksowe, jednak ich trwałość jest mniejsza, niż trwałość kompleksu, jaki metal tworzy z EDTA. Gdy więc wolne jony zostaną związane, titrant zaczyna reagować z kompleksem wskaźnika - zachodzi zatem zjawisko wypierania:

WSK(M) + EDTA WSK + EDTA(M)

Forma związana kompleksu powinna mieć inne zabarwienie niż forma uwolniona, jak zatem łatwo się domyśleć, po związaniu wszystkich jonów metalu, a więc w punkcie końcowym miareczkowania, barwa roztworu ulegnie zmianie.

W przypadku oznaczania wapnia obok magnezu należy silnie zalkalizować środowisko, dodając odpowiednią ilość wodorotlenku sodu, magnez będzie wówczas wiązany w formie wodorotlenku, zaś jego kompleks z EDTA będzie bardzo nietrwały, w związku z czym podczas miareczkowania zmianom stężenia będzie ulegał tylko wapń.

Wskaźnikiem użytym do tego oznaczania będzie Kalces, czyli sól sodowa kwasu kalkonokarboksylowego, który w punkcie końcowym zmienia kolor z różowo-fioletowego na niebieski. Filmu z miareczkowania kalcesem nie mam, ale są zdjęcia:


Kalces przed miareczkowaniem




Kalces po





Tak więc pobrałem dwie pipety badanej wody (podwójna ilość aby zeszło więcej titranta co zmniejsza błąd związany z niedokładnościami biurety), dodałem odpowiednią ilość NaOH, wlałem kilka kropel roztworu wskaźnika i jak się rzekło, miareczkowałem mianowanym roztworem EDTA dopóki nie nastąpiła zmiana zabarwienia.

Po przeliczeniu otrzymałem wynik 0,1242 g/l, co wobec
etykietowej 0,1313 g/l nie jest dużym błędem



Magnez:
Oznaczanie zawartości magnezu wykonuje się pośrednio. Zamiast tak dobierać warunki, aby wyeliminować wpływ wapnia, miareczkuje się po prostu sumę zawartości wapnia i magnezu. Ponieważ zawartość wapnia już poznaliśmy, przez odjęcie jednej wartości od drugiej uzyskamy zawartość samego magnezu.

Użytym przy tym wskaźnikiem jest Czerń eriochromowa T, związek organiczny o ciemnofioletowej barwie, tworzący z metalami kompleks koloru różowo-fioletowego, choć o bardziej soczystym odcieni niż kalces. W pobliżu punktu końcowego roztwór zabarwia się na fioletowo a za punkt końcowy uważa się zabarwienie niebieskie. I tu pomocny będzie film:


Nieco wcześniej napełniając biuretę zalałem fartuch roztworem EDTA, dlatego miareczkuję bez niego, nie zbyt może poprawnie.
Oznaczanie przeprowadza się w środowisku lekko zasadowego buforu amonowego. Po obliczeniach i odjęciu od otrzymanego wyniku oznaczonej wcześniej zawartości samego wapnia, otrzymałem zawartość magnezu 0,02433 g/l, wobec etykietowej 0,0225 g/l. Może gdybym używał bardziej rozcieńczonych titrantów udałoby się błąd zmniejszyć

A pozostałe jony? Chlorkowy oznaczyłem tylko jakościowo - do zakwaszonej kwasem azotowym V próbki dodałem azotanu srebra. Biały osad, rozpuszczający się w roztworze amoniaku i wytrącający się po ponownym lekkim zakwaszeniu, był oznaką jonów chlorkowych. W zasadzie mógłbym oznaczyć chlorki argentometrycznie metodą Mohra, ale brakło mi czasu. Sodu i potasu nie oznaczyłem, bo nie miałem drucika platynowego.

wtorek, 27 grudnia 2011

piątek, 23 grudnia 2011

OH, ten tlen!


W temacie modyfikowanej przecudnymi sprzętami wody bzdur krąży mnóstwo, i doprawdy nie sposób wszystkiego krótko omówić, ale w tej notce zajmę się jednym szczególnym aspektem, jak zwykle związanym z liczeniem na niewiedzę konsumenta.

Aby zapewnić klienta, że ich filtry/uzdatniacze/elektrolizery/magiczne podstawki mają szczególnie korzystne działanie, producenci takich urządzeń mówią wszystkim chętnym, że robią one z wodą coś szczególnego. Nie wystarczy, aby woda po przepuszczeniu przez nie była po prostu czysta, woda taka musi jeszcze mieć unikatową strukturę, być nasyconą kosmicznymi energiami albo mieć właściwości lecznicze. Co do tego co miałoby wywoływać takie jej własności, to akurat zależy on aktualnych trendów. Jeszcze w latach 30. można było kupić radonowane filtry, które miały nasycić wodę dobroczynną promieniotwórczością. Dziś najczęściej woda ma mieć niezwykłą strukturę, dzięki której wypłucze toksyny z organizmu, odświeży cerę, zapobiegnie powstawaniu wolnych rodników, a co najważniejsze - natleni organizm.
Jest to zresztą paradoks - wolne rodniki powstają w reakcjach utlenienia, więc usunąć jedno i dostarczyć drugie za jednym zamachem się nie da.

Do tej grupy sprzętów należą z pewnością domowe elektrolizery, sprzedawane jako generatory żywej wody, wody kwaśnej lub wody alkalicznej. Składają się one z prostownika, dwóch stalowych elektrod i membrany oddzielającej przestrzeń wokół anody od przestrzeni wokół katody. Podczas elektrolizy powstają w nich roztwory o odczynie kwaśnym lub zasadowym, zawierające wodorotlenki minerałów zawartych w wodzie lub kwas solny, z domieszką soli metalu z którego wykonano elektrodę. Dlaczego ludzie od kilkudziesięciu lat dają się na to nabrać, jest chyba oczywiste - tajniki elektrolizy są w szkołach omawiane na tyle pobieżnie, że człowiek dorosły nic już z nich nie pamięta.

I oto na stronie jednego z producentów takiego membranowego elektrolizera, znalazłem taki fragment:
Zawartość tlenu w wodzie zależy od wartości pH wody. Jak wiadomo cząsteczka wody składa się z jednego atomu tlenu i dwóch atomów wodoru.
Gdy proporcje te są idealne to znaczy gdy ilość jonów H+ jest identyczna jak ilość jonów OH – mamy do czynienia z wodą o pH=7 czyli obojętną.
Gdy ilość jonów OH- jest większa niż ilość H+ mamy do czynienia z wodą alkaliczną. W odwrotnej sytuacji (więcej H+ niż OH-) woda jest kwaśna.
Jony OH- są połączone z alkalicznymi minerałami. I zobacz co się dzieje. Dwie grupy OH- mogą stworzyć jedną cząsteczkę wody i dać jeden atom tlenu. Dodatkową korzyścią jest fakt, że minerał zostaje wykorzystany do neutralizacji toksycznych kwaśnych odpadów.
Krew o pH 7,45 zawiera o 64,9% więcej tlenu niż krew o pH 7,3. To ogromna różnica, pomimo niewielkiej zmiany pH krwi.
(...)
Wolne rodniki tlenowe to cząsteczki albo jony, którym na zewnętrznej orbicie brakuje jednego elektronu. Dążąc do natychmiastowego uzupełnienia braku, wolny rodnik uszkadza inną cząsteczkę pozbawiając ją elektronu. (...) Ujemny potencjał wody alkalicznej wykazuje bardzo silne właściwości przeciw utleniające. Po prostu woda alkaliczna zawiera bardzo dużo wolnych elektronów, które w każdej chwili mogą być oddane każdemu napotkanemu wolnemu rodnikowi. Zamiast śmieci więcej tlenu W wyniku przyłączenia wolnego elektronu z wody alkalicznej powstaje stabilna cząsteczka tlenu (O2). Korzyść wobec tego podwójna: zneutralizowany wolny rodnik (komórki uratowane przed zniszczeniem) oraz zwiększona zawartość życiodajnego tlenu we krwi. [1]

W wodzie alkalicznej dominują negatywne jony OH-, tj. w wodzie jest jedyny atom tlenu cząsteczki wody. Dlatego, pijąc wodę alkaliczną organizm otrzymuje dodatkową dawkę tlenu. A gdzie tlen, tam i życie, energia[2]
No no, bardzo ciekawe. Tylko że jak zwykle jest całkiem inaczej.
Czy woda zasadowa zawiera więcej tlenu? W zwykłej wodzie mamy H2O a tu OH, więc jeden wodór mniej, wydawałoby się więc, że zastąpienie części cząsteczek wody, anionami hydroksylowymi, powinno zwiększyć zawartość tlenu. Ale czy o 60%?

Skala pH służy do określenia kwasowości roztworu. Określa stężenie powstających w dysocjacji kwasów jonów wodorowych, a dokładniej jonów hydroniowych H3O+, jako że samodzielne protony w roztworach nie występują (w związku z czym w zasadzie powinna to być skala pH3O, ale ze względów historycznych utarło się stosować takie oznaczenie). Stężenia te w większości przypadków wyrażają się w wartościach ułamkowych, niższych od jedynki i w związku z tym zapisanie stężenia wprost jest niezupełnie wygodne. Dla kwasu o pH 3, jony hydroniowe mają stężenie 0,001 mol/l, dla obojętnej wody o pH 7, jest to stężenie 0,0000001 a dla zasady o pH 13 jest to 0,0000000000001 mol/l. Posługiwanie się takimi zapisami jest niewygodne, dlatego dla uproszczenia przyjęto skalę logarytmiczną, w której kwasowość to ujemny logarytm dziesiętny ze stężenia.
Logarytm z kolei, to liczbowa wartość potęgi do której musimy podnieść dziesięć aby otrzymać logarytmowaną liczbę. A więc jeśli 1000 = 10^3, to log 1000 = 3. W tym przypadku dla wartości niższych od jedynki wychodziłyby nam liczby ujemne, dlatego stosuje się logarytm ujemny ( wtedy -[-3] = 3). I po co to wszystko objaśniać? Ano po to, że w tych szczegółach tkwi mały diabełek, przez którego sprawa natlenienia organizmu zasadową wodą staje się nieoczywista.

Obliczmy jak, poprzez samą zmianę pH, zmienia się zawartość tlenu w wodzie. Dla uproszczenia będziemy liczyć to dla jednego mola, a więc dla 6,02221 x 10^23 atomów, co odpowiada ilości 18 ml wody. Policzmy procentową zawartość tlenu w wodzie. Mamy tu jeden mol tlenu, czyli 16 g na jeden mol wody czyli 18 g, więc: 16/18 *100% = 88,888% masowych. Taka czysta woda ma pH = 7, co oznacza, że zawiera 10^-7 jonów oksoniowych i 10^-7 jonów hydroksylowych.
Teraz dodajmy jakiejś zasady i zwiększmy jej pH do 11.
11 to o ponad połowę więcej niż 7, co więcej, stężenie jonów hydroksylowych zwiększyło się o cztery rzędy wielkości, a więc sporo. W wielkościach bezwzględnych będzie to różnica z 0,0000001 mol/l do 0,001 mol/l. Naszych jonów OH- jest zatem w roztworze dokładnie jeden promil, co nie stanowi dużej wielkości. Jaka jest teraz procentowa zawartość tlenu? Przyjmujemy, że wszystkie te dodatkowe jony OH- pochodzą z naszej zasady, i pamiętamy, że liczymy parametry dla 0,018 litra a nie 1l, nie mamy więc do czynienia z 0,001 mol lecz z 0,000018 mola.
Mamy tu zatem 1+ 0,000018 mola tlenu, co stanowi 16,000288 g, na 1mol wody + 0,000018 mol jonów OH, co stanowi 18,0003 g, zatem: 16,000288/18,0003 *100% = 88,889% masowych.
Zatem zawartość tlenu wzrosła nam o jedną setną procenta. To mało.

Oczywiście ze wzrostem pH i zawartość tlenu będzie nam rosła, ale już roztwory o pH 11 są silnie żrące, więc siłą rzeczy ich spożywanie będzie szkodliwe. Zresztą, tlen w jonie hydroksylowym jest silnie związany, zbyt silnie, aby stanowić źródło dla oddychania komórkowego.

Skąd więc te 60%? Dotyczą one oczywiście krwi, a związane są z całkiem innym mechanizmem. To jak silnie tlen może być związany z hemoglobiną, zależy od pH krwi, wskutek efektu Bohra, więc w krwi o pH 7,3 rzeczywiście może być 60% mniej tlenu niż we krwi 7,45, ale nie będzie to związane z niższym stężeniem jonów OH, a z właściwościami hemoglobiny.
Czy jednak picie zasadowych roztworów, zwiększy pH krwi i zawartość tlenu? Nasz organizm stara się utrzymać kwasowość krwi na stałym poziomie. Ma do tego kupę interesujących mechanizmów, które przeciwdziałają zarówno zakwaszeniu jak i alkalizacji krwi, dlatego picie zasadowej wody nie powinno niczego zmieniać. Gdyby zaś zmieniło odczyn krwi na bardziej alkaliczny, miałoby to bardzo szkodliwy wpływ.

No dobra, a zatem odczyn krwi i soków komórkowych się nam nie zmieni, ale co z tymi właściwościami przeciw utleniającymi?

Wolne rodniki to atomy lub cząsteczki, zawierające jeden elektron nie do pary. Może to być elektron nadmiarowy lub pozbawiony drugiego, zwykle rzecz dotyczy tego drugiego przypadku. Elektrony bowiem charakteryzują się spinem, czyli kierunkiem orientacji ich pola magnetycznego, i może on przyjmować wartości + lub -1/2. Elektrony w atomach lub cząsteczkach starają się parować tak, że jeden ma spin dodatni a drugi ujemny. Jeśli przydamy atomowi dodatkowy elektron, bądź jeden usuniemy, ten jeden bez pary będzie szukał drugiego. Taki rodnik będzie zatem reagował z innymi cząsteczkami zabierając lub oddając elektron i bardzo często wywołując tym reakcję, na przykład utlenienie DNA czy redukcję jakiegoś enzymu.

Czy woda alkaliczna zawiera dużo wolnych elektronów, "parujących" wolne rodniki? Skądże, gdyby zresztą zawierała, byłaby szkodliwa. Patrzcie na definicję - jeśli elektron jest jeden i nie ma pary, to taka cząstka jest rodnikiem. Coś takiego jak wolny elektron w roztworze (elektron zhydratowany) istnieje, ale ponieważ jest to jeden elektron, sam jest rodnikiem i to silnym. W reakcji wolnego rodnika z jonem hydroksylowym nie powstanie tlen, lecz... rodnik hydroksylowy. A ten jest uważany za wyjątkowo szkodliwy.
Różnica między cząsteczką wody, jonem i rodnikiem hydroksylowym.
Kopkami oznaczyłem elektrony.


Ów ujemny potencjał na który się powołują mówi nam o czymś całkiem innym. Potencjał oksydacyjno-redukcyjny (ORP) to zdolność układu do oddawania lub przyjmowania elektronów. Potencjał układów jest mierzony względem potencjału standardowej elektrody wodorowej. Ujemna wartość nie świadczy zatem o ujemnym ładunku czy obecności elektronów, a jedynie, że potencjał układu jest od potencjału porównawczego niższy.
Wartość ORP w dużym stopniu zależy od pH i spada wraz ze wzrostem alkaliczności. A teraz najważniejsze - ujemny potencjał roztworów zasadowych sprzyja reakcjom utleniania! A więc całkiem na odwrót niż podaje producent elektrolizera.


A korzystając z okazji, życzę wszystkim przeglądającym miłych, rodzinnych i w pełnym tych słów znaczeniu niezapomnianych świąt
Nie całkiem
bez chemii.
------------
[1] http://filtry-do-wody-aquarion.pl/woda/wiecej-tlenu/
[2] http://sklep.jonizowanawoda.pl/przeplywowy-filtr-jonizator-aschbach,id4.html

* http://slownik.ekologia.pl
* http://pl.wikipedia.org/wiki/Skala_pH

Polecam też artykuł pH-owa jednostka na stronie Tomasza Płucińskiego

czwartek, 15 grudnia 2011

Czad

Zaczyna się sezon grzewczy, dlatego dobrze jest napisać coś o sprawie w prawdzie znanej, ale jak pokazują statystyki zapominanej, mianowicie o tlenku węgla.

Tlenek węgla jest związkiem węgla na stopniu utlenienia II, rzadziej występującym w przyrodzie. Zwykle we wzorach tej cząsteczki zaznacza się, że między tlenem a węglem znajdują się dwa wiązania, jednak badania pokazały że mamy do czynienia z niepełnym wiązaniem potrójnym. Ten nietypowy dla tlenu stan wiąże się z przesunięciem jednej z wolnych par elektronowych tlenu, i utworzeniem wiązania koordynacyjnego. Ot taka ciekawostka.

Tlenek węgla powstaje podczas spalania związków organicznych, przy niedostatecznym dostępie tlenu. Jest gazem bezbarwnym, pozbawionym smaku i zapachu. Dawniej, gdy do ogrzewania mieszkań i oświetlania ulic używano gazu świetlnego, zawierającego bardzo dużo tlenku węgla, jedynym ostrzeżeniem był zapach spalenizny, często jednak spaliny, zwłaszcza te z piecyków gazowych, są bezwonne. Szacuje się że przy niedostatecznej wentylacji, piecyk gazowy może w ciągu minuty wytworzyć śmiertelną ilość czadu - a niestety często bywa że tego typu piecyki montowane są w łazienkach pozbawionych wywietrzników, stąd często słyszy się o zaczadzeniu w tym miejscu. Bywa też, że wentylacja ulegnie awarii, czy to w skutek warunków pogodowych, czy zatkania kurzem, czy nawet wskutek niewłaściwie przeprowadzanego remontu. Dlaczego jednak czad jest tak niebezpieczny?

Wszystko to wiąże się z naszą krwią, a dokładniej z sposobem przenoszenia tlenu. Już tu kiedyś opisywałem budowę hemoglobiny - białko globinowe połączone z Hemem, zawierającym w pierścieniu porfirynowym skompleksowany atom żelaza dwuwartościowego. Atom taki może tworzyć kompleksy z sześcioma ligandami - w tym przypadku cztery miejsca zajmują azoty pierścienia, piąte białko globinowe a szóste może wiązać inne cząsteczki. Na przykład tlen.
Gdy krew, porozdzielana w naczynkach włosowatych znajdzie się w płucach, wiąże tlen tworząc oksyhemoglobinę:
Hb + O2 oxHb

Ponieważ ciśnienie cząstkowe tlenu we krwi w pęcherzykach płucnych (a zatem jego stężenie) jest wysokie, równowaga reakcji jest silnie przesunięta w prawo, a zatem oksyhemoglobina jest trwalsza. Gdy natlenowana krew znajdzie się jednak wśród potrzebujących go tkanek, a zatem tam, gdzie ciśnienie cząstkowe tlenu jest małe, reakcja odwraca się i tlen jest uwalniany. Dodatkową pomocą jest tu fakt, że w tych miejscach wyższe jest stężenie dwutlenku węgla, a co za tym idzie, warunki są tam bardziej kwaśne. A w takich warunkach oksyhemoglobina jest mniej trwała. Nie potrzebny organizmowi dwutlenek węgla jest usuwany, choć hemoglobina ma tutaj mniejsze znaczenie - jedynie część CO2 jest wiązana z hemoglobiną i to nie w formie kompleksu z żelazem a karbaminianu powstałego w reakcji z częścią białkową.
I tak wszystko sprawnie działa, dopóki nie pojawia się tlenek węgla.

Żelazo chętnie tworzy kompleksy z tlenkiem węgla, tak zwane karbonylki, ma on bowiem zależnie od formy rezonansowej jedną lub dwie pary elektronowe. Podobnie rzecz się ma z atomem żelaza w hemoglobinie. Tlenek podstawia się w wolne miejsce i tworzy karboksyhemoglobinę, stanowiącą kompleks blisko 200 razy trwalszy od oksyhemoglobiny. Nawet gdy taka cząsteczka znajdzie się w środowisku silnie natlenionym, nie przyjmie już cząsteczki tlenu
Hb + CO HbCO
Jak zatem łatwo się domyśleć, z każdym haustem zaczadzonego powietrza, coraz większa ilość krwi nie może przenosić tlenu. W efekcie człowiek zaczyna się dusić "od środka". Już 0,16% czadu w powietrzu wywołuje zgon po dwóch godzinach.
Niestety natura nie przewidziała u nas mechanizmu wykrywającego zmniejszenie ilości tlenu. Mamy jedynie receptory wykrywające zwiększenie stężenia dwutlenku węgla, które w takiej sytuacji pobudzają ośrodek oddechowy, co objawia się przyspieszeniem i pogłębieniem oddechu, ale przed czadem nie ostrzega nas nic. Dlatego wszystkie wczesne objawy podtrucia są związane z pogłębiającym się niedotlenieniem.

Pierwsze objawy podtrucia są nieswoiste. Badani poddani niewielkim dawkom popełniali więcej błędów w testach sprawdzających na przykład rozróżnianie odcieni, wybór właściwej liczby w szeregu czy też ich pismo stawało się mniej staranne. Błędy w testach narastały wraz ze stężeniem aż do poziomu ok. 0,01% tlenku w powietrzu (co odpowiadało ok. 10% karboksyhemoglobiny we krwi) kiedy to pojawiał się lekki ból głowy, czy uczucie ucisku w piersiach. Dla silniejszych podtruć ból głowy narastał, pojawiało się zmęczenie i apatia, mdłości i przyspieszenie tętna, a poziom 50% karboksyhemoglobiny mógł już wywoływać niebezpieczne zapaści.
Z drugiej ręki wiem, że gdy policja lub strażacy wchodzą do mieszkania osoby zatrutej czadem, często znajdują jej ciało leżące w pobliżu okna. Takie osoby zauważały, że dzieje się coś niedobrego i chciały zaczerpnąć tchu, jednak przy takim stężeniu czadu pojawia się niebezpieczny objaw, mianowicie osłabienie mięśni kończyn, przez co często ofiary nie miały sił aby podejść do okna.
Ostatecznie pojawia się śpiączka i zgon wskutek uszkodzenia mięśnia sercowego.
W patologii stwierdza się karminowe zabarwienie skóry i plam opadowych. Karboksyhemoglobina jest bowiem ciemnoczerwona, więc nie pojawia się nawet ostrzegawczy w przypadku zwykłych duszności objaw zsinienia warg.

Jak ratować zatrutych? Przede wszystkim trzeba wynieść ich na świeże powietrze i w razie potrzeby podtrzymywać sztucznie oddech. W warunkach szpitalnych stosuje się tlenoterapię, nawet w warunkach hiperbarycznych, aby dotlenić organizm. Można też przetaczać choremu niezatrutą krew. Ponadto groźnym następstwem niedotlenienia jest zakwaszenie organizmu, które też należy likwidować. Późne objawy związane z niedotlenieniem, głównie ze strony układu nerwowego i serca, mogą utrzymywać się jeszcze wiele miesięcy po wyzdrowieniu.
Kontrowersyjną kwestią jest kumulowanie się skutków lekkich podtruć. Na to aby tlenek węgla gromadził się w organizmie nie ma dowodów, jednak dłuższa ekspozycja na małe stężenia wywołuje objawy neurologiczne a nawet psychiczne, podobne do chorób otępiennych a więc osłabienie pamięci, inteligencji czy trudności w skupieniu uwagi, a czasem też trudności w poruszaniu, uciążliwe bóle głowy i sztywność palców, związana zapewne z uszkodzeniem nerwów.

Powszechnym źródłem tlenku węgla jest dym papierosowy, zawierający do 4% tego związku. U nałogowych palaczy stężenie karboksyhemoglobiny we krwi osiąga poziom 7-10%, można więc zakwalifikować ich do lekko zatrutych. Sądzi się że to właśnie ten efekt, oprócz wpływu innych szkodliwych związków, odpowiada za spadek masy urodzeniowej dzieci matek palących w czasie ciąży. Również spaliny silników spalinowych zawierają tlenek węgla, co bywa przyczyną masowych zatruć w garażach czy halach magazynowych, gdzie używa się spalinowych wózków widłowych. Z tej też przyczyny zakazano używania w samochodach systemów ogrzewania przy pomocy spalin.

Nie do pominięcia jest też kwestia częstych samobójstw czy to gazem świetlnym, czy spalinami wprowadzanymi celowo do samochodu.

Czarna historia CO
Tlenek węgla powodował i wciąż powoduje dużą ilość zatruć, czy to rozmyślnych, czy to przypadkowych. Rocznie w Polsce notuje się kilkadziesiąt zgonów z tej przyczyny. W USA jest to około 1,5-2 tyś zgonów. Liczba ta jest jednak zapewne znacznie większa jeśli uwzględni się, że zaczadzenie jest główną przyczyną śmierci w wyniku pożarów. Wielokrotnie był przyczyną masowych tragedii.

Najtragiczniejsza jaką można przypisać samemu tylko tlenkowi, miała miejsce w 1944, w nieoczekiwanym miejscu - w pociągu.

3 marca 1944 roku pociąg numer 8017 wyjechał z Neapolu, kierując się w stronę górskiej miejscowości Potenza. Był to pociąg pierwotnie towarowy, do przewozu drewna, pospiesznie zamieniony na pasażerski, ciągnięty przez dwa parowe silniki opalane węglem. Skład składał się z 47 wagonów i dwóch lokomotyw, co przy dość znacznym ciężarze miało pomóc w pokonywaniu stromych odcinków. O godzinie 19 stanął na stacji Battipaglia, gdzie w trakcie konserwacji wsiadło do niego ostatnich kilkanaście osób, zwiększając liczbę pasażerów do blisko sześciuset. Stamtąd ruszył dalej i minąwszy stację Bolvano wjechał w długi tunel za którym po 20 minutach miał dotrzeć do Bella-Muro Locano. Gdy jednak pociąg się nie pojawiał, zaniepokojona obsługa wysłała tam człowieka na drezynie, który wkrótce wrócił z przerażającą wiadomością.
Oto bowiem pociąg wjechał do tunelu, wewnątrz którego szyny biegły z dość dużym nachyleniem 12,8 ‰ . Był jednak znacznie obciążony pasażerami, zaś szyny najprawdopodobniej oblodzone, dlatego nie mogąc wjechać pod górę zatrzymał się w odległości 800 metrów od wlotu, z dwoma wagonami wystającymi na zewnątrz. Załogi obu lokomotyw znajdujących się wewnątrz tunelu, zaczęły więc dorzucać więcej węgla do kotłów, aby zwiększyć moc. Wszystkie spaliny z obu kotłów trafiały zatem do wąskiej przestrzeni tunelu, osiągając śmiertelne stężenie. Gdy z najbliższej stacji przybyła pomoc, zaś pociąg został wysunięty z tunelu, wszyscy pasażerowie z wagonów wewnątrz tunelu już nie żyli, zaś ci w dwóch ostatnich byli w znacznym stopniu podtruci.
Różne źródła podają rozbieżne, ale i tak okropne liczby ofiar, pomiędzy 427 a 549 śmiertelnie zatrutych. Ofiary zostały szybko pochowane w masowych grobach, zaś wieść o katastrofie nie była szeroko rozgłaszana, ze względu na wojenną propagandę. Tajemnicą poliszynela było, że węgiel jaki dostępny był wówczas na rynku, ze względu na blokady gospodarcze był bardzo słabej jakości, co mogło przyczynić się do pogorszenia jakości spalania. Była to najgorsza katastrofa kolejowa we Włoszech.[1]

Jednak już wcześniej tlenek węgla zasłużył na złą sławę. Był bowiem, o czym nie każdy dziś wie, jednym z pierwszych narzędzi eksterminacji więźniów użytych podczas II wojny światowej. Zanim jeszcze wynaleziono Cyklon B, zabijanie żydów i innych większych grup dokonywało się na miejscu w specjalnych ciężarówkach (gaswagen). Zabijanych upychano w tylnej pace specjalnie uszczelnionej ciężarówki, którą zamykano i ustawiano na jałowy bieg, kierując specjalnymi przewodami spaliny do środka. Była to zatem przenośna komora gazowa, pozwalająca w ciągu kilku minut zabić 20-30 osób. [2] Komór takich używano w obozie w Chełmnie.

W późniejszych latach notowano jedynie przypadkowe zatrucia czadem, często w trakcie pożarów. Przykładem może być tragedia z roku 1990 , kiedy to w pożarze nocnego klubu Happy Land Social Club w Nowym Jorku zginęło 87 osób. Autopsja wykazała, że żadna z tych osób nie zginęła w wynika działania ognia, zaś wszystkie z powodu zatrucia dymem zawierającym tlenek węgla, cyjanowodór i inne produkty pirolizy tworzyw sztucznych. Pożar był wywołany umyślnym podpaleniem przez byłego pracownika klubu, którego skazano na astronomiczną karę 178 razy po 25 lat.[3]

W naszym kraju do największych tragedii należy z pewnością zatrucie w Żychlinie w 2006 roku. Gdy rodzina państwa Groszków zjechała do rodziców na Sylwestra, najmłodsze dziecko, trzyletni chłopiec, zaczął się źle czuć. Domownicy sądzili, że przyczyną złego samopoczucia była zupa pomidorowa. Gdy stan chłopca się pogorszył, jego matka pojechała z nim do szpitala. Nie mogąc dodzwonić się do rodziców wysłała tam męża, który zastał domowników zaczadzonych. Zginęli wówczas dziadkowie, rodzice i dwoje wnuków. Czad ulatniał się z niesprawnego piecyka gazowego.[4]

Czy nie dosyć tych okropności? Jak się ktoś przestraszy, to może ktoś pomyśli, żeby się zabezpieczyć. Czujniki tlenku węgla nie są urządzeniami drogimi, a jednak mało kto je posiada. Siedzą Polacy w owianych śniegiem domkach, w których w większości izolacja termiczna jest słaba, zaklejają plastrem kratki wentylacyjne, kupują plastikowe, szczelne okna i jeszcze się dziwią, że w kominie słaby ciąg. A jak potem dojdzie do tragedii, to jest wielkie zaskoczenie.

Trzeba trochę ostrożności. A że sezon grzewczy już się zaczyna, warto brać to wszystko pod rozwagę.
-------
[1] http://it.wikipedia.org/wiki/Disastro_di_Balvano Więcej relacji w książce "Niezwykłe katastrofy XX wieku" Andrzeja Grobickiego
[2] http://www.deathcamps.org/gas_chambers/gas_chambers_vans_de.html
[3] http://en.wikipedia.org/wiki/Happy_Land_fire
[4] http://www.rp.pl/artykul/80451.html?print=tak


niedziela, 4 grudnia 2011

Szpinak w żyłach

Chciałbym zająć się tu drobną, ale mającą duże oddziaływanie sprawą, wynikłą po części ze zbytnich uproszczeń w mediach, a po części może ze sprytu specjalistów od marketingu, liczących na ludzką niewiedzę.

Ci, którzy spędzali dzieciństwo przed telewizorem nastawionym na takie kanały jak Carton Networks, przypomną sobie zapewne postać siłacza w marynarskim ubranku, znanym jako Peppeye, któremu duże dawki szpinaku pomagały rozprawić się z przeciwnościami losu. Wydaje się, że postać miała pierwotnie stanowić zachętę dla dzieci, aby zajadały się szpinakiem, będącym bardzo zdrowym dzięki dużej zawartości żelaza. Akurat z tym żelazem, okazało się że to nie prawda i nawet nie wiadomo kiedy i dlaczego ta błędna informacja zaczęła krążyć, ale szpinak rzeczywiście można dzieciom polecić, o ile oczywiście nie otrzymają go w postaci szaro-zielonej papki, która kilka miesięcy przeleżała w zamrażalniku ( warto zauważyć, że puszkowany szpinak Popeye'a jest wyraźnie szpinakiem liściastym, a taki jest podobno najsmaczniejszy). Sam niedawno odkryłem, że lekko podsmażone naleśniki ze szpinakiem, polane sosem czosnkowym, to danie nadzwyczaj smaczne i sycące. Zawiera różne witaminy, minerały i jest bardzo zielony.
Co z tego że zielony?

Moim zdaniem jest to głównie oznaka świeżości, ale co niektórzy przypisują jej znaczenie znacznie większe, bo oto barwiący liście chlorofil miałby mieć nadzwyczajne właściwości:
Tak, jak jakość benzyny poznajemy po wysokości liczby oktanów, tak jakość zielonego pokarmu określa ilość pigmentu chlorofilowego. Już w 1940 roku w czasopiśmie chirurgicznym "Journal of Surgery" pojawiła się informacja o 1200 chorych, u których chlorofil przyspieszył gojenie ran. Według Barbary Simonshon chlorofil zachowuje się jak kondensator energii słonecznej. Dr Swope mówi o nim, że "zieloną krew roślin zmienia w naszym organizmie na czerwoną". Dlaczego? Warto zwrócić uwagę na fakt, że hemoglobina - nasz barwnik krwi - ma podobną do chlorofilu strukturę chemiczną. Dzięki chlorofilowi rośliny żyją, a my oddychamy. Chlorofil poprawia obraz krwi, przyspiesza gojenie ran, poparzeń i chroni organizm przed stanami zapalnymi i infekcjami. Dzięki niemu transport tlenu jest lepszy, co zapobiega powstawaniu infekcji. Chlorofil w swej budowie jest podobny do hemoglobiny krwi : w hemoglobinie białkowa struktura formuje się wokół molekuły żelaza, w chlorofilu wokół magnezu. Dlatego właśnie chlorofil wpływa na organizm w ten sam sposób jak hemoglobina czyli podwyższa poziom tlenu.
Cały organizm zostaje dotleniony, w tym komórki mózgowe, co przekłada się na dobre samopoczucie i jasność myślenia.[1]
albo:
Dzięki chlorofilowi dostarczamy organizmowi niezbędne minerały, bez których nie da się żyć. Gdy jemy pokarm z zawartością chlorofilu, magnez jako jego główny element, dostaje się bezpośrednio do tkanki mięśniowej. Tam służy dobrej kondycji serca i układu oddechowego. Magnez jest właśnie tym pierwiastkiem, który rozpręża skurcze mięśni, uspakaja zakończenia nerwowe i usprawnia oddychanie. To też magnez jest jednym z ważniejszych minerałów. Podczas jego uwalniania z chlorofilu staje się mały cud. Chlorofil pochłania żelazo i zamienia się w ludzką krew.[2]
Gdyby było tak dobrze, to by było wspaniale, niestety dane naukowe na ten temat nie są jednoznaczne. Mało znalazłem prac na temat wchłaniania i biotransformacji chlorofilu w organizmach zwierzęcych. Gdyby chodziło o chlorofil w roślinach, to z samych abstraktów by się kilka tomów złożyło, jednak co do zwierząt miałem trudności. Na szczęście znalazłem wystarczająco aby sklecić artykuł i dojść do jakichś wniosków. Ale najpierw opowiem o naszym bohaterze:

Chlorofil to zielony barwnik roślinny, niezbędny do przeprowadzenia procesu fotosyntezy. Jego nazwa pochodzi od greckiego "chloros" czyli "zielony". Nie zawiera chloru. Właściwie w roślinach występują dwa jego rodzaje - chlorofil a i chlorofil b, różniące się podstawnikami pierścienia tetrapirolowego. Grupa ta jest heterocyklicznym pierścieniem o właściwościach aromatycznych, z czterema atomami azotu otaczającym wewnętrzny otwór. Podstawową formą, z której wywodzą się wszystkie inne, jest porfiryna:
Kropkami oznaczyłem pary elektronowe na atomach azotu. Mają one tutaj zasadnicze znaczenie, mogą bowiem uczestniczyć w tworzeniu wiązań koordynacyjnych, a zatem w tworzeniu kompleksów z kationami metalu. Cząsteczki zawierające pierścień w takiej właśnie formie, nazywany porfirynami, istnieją jednak jego różne pochodne, różniące się liczną i rozmieszczeniem wiązań podwójnych.
Związki zawierające taki pierścień spełniają wiele ważnych funkcji biologicznych. Przykładem witamina B 12, gdzie atomem skompleksowanym jest kobalt Co (III), pierścień przyjmuje w tym związku formę korynową, to jest pozbawioną czterech wiązań podwójnych w pięciokątnych członach pirolowych. W przypadku dwóch omawianych związków, w chlorofilu pierścień chlorynowy kompleksuje magnez, zaś w hemie w hemoglobinie pierścień porfirynowy kompleksuje żelazo II.

Związki tetrapirolowe dzięki obecności wielu skondensowanych wiązań podwójnych pochłaniają światło o różnych długościach fal. Dla chlorofilu jest to głównie światło czerwone i fioletowe, dlatego związek ma ciemnooliwkowy lub chłodny "morski" kolor. Aby rośliny mogły korzystać też z innych długości fali (dla światła słonecznego maksimum natężenia ma kolor zielony) wytwarzają barwniki o innych kolorach, głównie karotenoidy pochłaniające zieleń a więc czerwone. Mieszanka tych barwników decyduje o soczystym odcieniu liści roślin.
Gdy na chlorofil w chloroplastach pada światło, pierścień chlorynowy pochłania jego część. Wzbudzona w nim energia za pośrednictwem odpowiednich białek zostaje zamieniona na energię chemiczną przekazywaną w cząsteczkach ATP i NADPH. Roślina zużywa ją na przeprowadzanie skomplikowanych reakcji metabolicznych, zamieniających wodę, dwutlenek węgla i składniki mineralne, w cukry, białka, tłuszcze, drewno, jabłka i wszystko inne z czego roślina jest zbudowana. Nie będę tego szerzej omawiał, bo to rzecz dosyć skomplikowana.
Owo przeniesienie pochłoniętej energii na inne cząsteczki może jednak mieć również niekorzystne skutki. Przykładem jest choćby Hyperycyna, występująca naturalnie w Dziurawcu zwyczajnym. Przy dłuższym stosowaniu zioła może osiągnąć w skórze stężenie, powodujące po wystawieniu na słońce rumień i oparzenia. Następuje tutaj takie samo wzbudzanie cząsteczki, jednak energia wzbudzenia przekazywana jest nieprzygotowanym na to białkom, lipidom i związkom nukleinowym komórek skóry. Stąd zaleca się ostrożność przy korzystaniu ze specyfików zawierających to zioło. Inną przypadłością związaną z gromadzeniem się w organizmie porfiryn jest Porfiria, która oprócz zaburzeń układu nerwowego objawia się między innymi uczuleniem na światło. Skądinąd próbuje się wykorzystać tę właściwość w fotodynamicznym niszczeniu czerniaka

A co z barwnikiem krwi? W tym przypadku światło nie jest potrzebne do działania kompleksu, głównym bowiem czynnikiem decydującym o właściwościach biologicznych hemu jest nie zupełnie skompleksowane żelazo.
Już tu pisałem o kompleksach żelaza. W żelazocyjankach do jednego kationu żelaza podłączało się sześć grup cyjankowych. W przypadku hemu jeden atom żelaza jest zatrzymany przez cztery atomy azotu wewnątrz pierścienia, natomiast dwie strony pozostają wolne. Atom centralny może teraz utworzyć kompleksy z rozmaitymi ligandami nieorganicznymi, jak na przykład z cząsteczką tlenu, czemu sprzyja kształt przyłączonego białka globinowego. Hemoglobina zostaje zatem utlenowana ale nie utleniona. Zapominają o tym ci, którzy z przyczyn zdrowotnych zażywają bądź wstrzykują sobie takie "cudne" specyfiki, jak chloran potasu czy woda utleniona, twierdząc, że natleniają organizm. W takich przypadkach żelazo II utlenia się do żelaza III a takie nie ma zdolności do wiązania tlenu.

Tak więc w ogólnym zarysie hem w krwi ma coś wspólnego z chlorofilem roślin, jednak czy różnica polega tylko na rodzaju kompleksowanego metalu? Zobaczmy:

Pierścień jest, ale podoczepiane są do niego różne podstawniki. Pół biedy, gdy jak w przypadku chlorofilu, doczepiony jest długi łańcuch nienasyconego alkoholu, przez co związek staje się formalnie estrem - to można zhydrolizować i nie będzie sprawy; jednak inne podstawniki alkilowe są z nim połączone bezpośrednio, a to jest już trudniejsze do przekształcenia. Poza tym w chlorofilu mamy pierścień chlorynowy a w hemie porfirynowy - niby różnica dotyczy jednego wiązania mniej czy więcej, ale w chemii często tyle wystarczy abyśmy mieli do czynienia z całkiem innym związkiem.
Zresztą aby chlorofil zamienił się w hem, musi najpierw zostać wchłonięty, a żeby został wchłonięty, musi zostać spożyty. Niestety po spożyciu chlorofil ląduje w żołądku, którego silnie kwaśne środowisko odszczepia magnez zamieniając cząsteczkę w szarawą feofitynę. Jak wynika z badań na które się natknąłem, fityny są praktycznie jedynym wykrywalnym metabolitem chlorofilu w kale, co oznacza, że związek w całości ulega przemianie w formę bezmagnezową[3][5]. Wizja zielonego barwnika krążącego mam w żyłach i we właściwych miejscach zamieniającego się w potrzebne związki jest zatem błędna.

Czy wobec tego chlorofil może być dobrym dostarczycielem magnezu? Podobno minerały w chelatach wchłaniają się lepiej, a chelat to przecież taki właśnie kompleks.
Policzmy:
masa molowa chlorofilu a to 893.49 g/mol , dzienne zapotrzebowanie magnezu to ok 300-400 mg na dobę . Jedna cząsteczka chlorofilu zawiera jeden atom magnezu, więc mol cząsteczek zawiera 24 g magnezu. Robiąc z tego proporcję stwierdzamy, że dzienna dawka magnezu zawarta jest w ok. 14-15 gramach chlorofilu. Jak na czysty związek to ze dwie łyżki, co oczywiście nie zmieści się w jednej - dwóch kapsułkach. Szpinak zawiera 3 do 5% chlorofilu, więc na dzienną dawkę przypada około kilograma zieleniny. Raczej takie sobie to źródło, nawet przy założeniu 100% wchłaniania ( uwolniony magnez w rzeczywistości wchłania się słabo), choć oczywiście jakaś korzyść zawsze jest.

No dobrze. Chlorofil się nam demagnezuje, ale może owe fityny są wchłaniane? A owszem.
Znalazłem takie badanie, w którym szczurom podano feofitynę znakowaną węglem C-14, otrzymaną za pomocą preparatywnej chromatografii cienkowarstwowej wyciągu z liści tytoniu rosnącego na pożywkach wzbogaconych w ten izotop. Dlaczego akurat z tytoniu nie wiem, może dobrze się go stosuje do tych celów. W każdym razie po rozdziale i potwierdzeniu tożsamości związku, podano go szczurom po czym monitorowano radioaktywność wszystkich wydzielin. Okazało się, że część fityn pojawiła się we krwi, stanowiąc jednak około 1-2% całej podanej ilości. [4]

A co nasz organizm robi z fitynami? Trawi je. Może się to wydać nielogiczne, ale nie ma u nas mechanizmu recyklingu piroli ze zużytych krwinek. Organizm wydala je jak tylko może. Gdy czerwone krwinki obumrą wyłapuje je śledziona. Tam żelazo jest odszczepiane a enzymy rozrywają pierścień tworząc zieloną biliwerdynę, która po dalszych przekształceniach i wędrówce do wątroby zamienia się w żółtą bilirubinę, ta jest sprzęgana z kwasem glukuronowym i wydalana z żółcią do jelit gdzie bakterię przerabiają ją na sterkobilinogen, o barwie brązowej, stanowiący o kolorze kału. Na mniejszą skalę obserwujemy te przemiany w przypadku stłuczeń - najpierw wylana pod skórę krew zabarwia je na czerwono, potem na niebiesko aby przejść w zieleń i lekką żółć.
Cząsteczka feofityny różni się od hemu, jest jednak do niego na tyle podobna, że organizm będzie ją poddawał tym samym przemianom, więc z rozchodzenia się po organizmie nici. Nową porcję hemu wytworzy sobie w genialny sposób z prostych aminokwasów (a więc z białek). Zatem pomysł aby chlorofil zamieniał się w krew i natleniał organizm, wobec metabolizmu przepada z kretesem. Nie jest też tak, że chlorofil roślinny pochłonął tlen i będzie go nam oddawał, czy też że zastąpi hemoglobinę i sam będzie go przenosił do potrzebujących tkanek przy okazji zabijając wirusy i bakterie, jak sugeruje wiele stron. Nie do tego rośliny go wytarzają, żeby wiązał zupełnie im niepotrzebny tlen, on ma jedynie dostarczyć chemicznej energii po naświetleniu. Tej energii zresztą nie magazynuje, i nie będzie nam oddawał, nie jest więc "płynnym słońcem" jak piszą inne strony.

Kwestię natleniania organizmu chlorofilem podjął popularyzator nauki Ben Goldacre, a zrobił to w tak wspaniałym stylu, że warto go zacytować:
...pani doktor zalecała spożywanie szpinaku oraz ciemniejszych liści roślin, ponieważ zawierają więcej chlorofilu. Według pani McKeith jedzenie ich ma dobroczynne skutki, ponieważ "zawierają dużo tlenu" i naprawdę "natleniają Twoją krew". Ten sam nonsens powtarza się co rusz w jej książkach. (...) Czy chlorofil zawiera dużo tlenu? Nie. Pomaga wytwarzać tlen. Pod wpływem światła. A w twoich jelitach jest całkiem ciemno. Jeśli pojawia się tam światło, to oznacza to, że stało Ci się coś bardzo przykrego. Żaden chlorofil który zjesz, nie stworzy ci tam tlenu. A zresztą, nawet gdyby tak było, gdyby pani dr Gilian McKeith wsadziła ci latarkę do odbytu, próbując w ten sposób udowodnić, że ma rację, a zjedzona przez ciebie sałata zaczęłaby fotosyntezę, nawet jeśli napełniłaby twój brzuch dwutlenkiem węgla (podrzucając chloroplastom pożywkę), i jakimś cudem naprawdę doszłoby do produkcji tlenu, wciąż nie byłbyś w stanie przyswoić go sobie za pośrednictwem jelita, ponieważ narząd ten ma wchłaniać produkty spożywcze. To płuca są narządem zoptymalizowanym pod kątem wprowadzenia tlenu do organizmu. Nie masz chyba skrzeli w jelitach?
"Lekarze, Naukowcy, Szarlatani"s.125-126
Ostatnio pojawiła się jednak inna substancja, Chlorofilina, reklamowana jako wysoce skuteczna pochodna chlorofilu.
Jest to substancja sztuczna. Wyizolowany chlorofil poddany zmydlaniu, dzięki czemu odszczepia długołańcuchowy alkohol, i z magnezem zamienionym na miedź. Związek taki dobrze rozpuszcza się w wodzie i na oko bardzo mocno przypomina hem. Co ważniejsze, chlorofilina jest trwalsza w kwaśnym środowisku i duża jej część przedostaje się w niezmienionej postaci do jelit, gdzie mogłaby być wchłaniana. Zachowuje też kolor zielony, dlatego podobnie jak chlorofil jest dodawana do żywności jako barwnik E 141. Rozmaite strony zachwalają preparat, przypisując mu te same właściwości co chlorofilowi - a mianowicie ma ona, za pośrednictwem miedzi, przenosić tlen. Akurat co do tego mam spore wątpliwości.

W hemie mieliśmy żelazo II tworzące chętnie oktaedryczne kompleksy z sześcioma ligandami. Ponieważ cztery miejsca były zajęte przez azoty w pierścieniu porfirynowym, dwa pozostawały wolne i żelazo mogło przenosić tlen. Miedź również chętnie tworzy kompleksy, na przykład piękny, atramentowy kompleks z amoniakiem:
W tym przypadku liczba koordynacyjna wynosi 4. Jak łatwo się domyśleć, w porfirynie, wszystkie cztery miejsca na ligandy są dla atomu miedzi zajęte, więc tlen nie będzie miał gdzie się przyczepić.

No dobra, może nas nie natleni, ale czy przynosi nam jakieś korzyści? Żeby przynieść jakieś skutki musiałaby się wchłonąć. Barierę żołądka przechodzi i dostaje się do jelit, a jak wykazały badania, ulega wchłonięciu do krwi w zauważalnych ilościach. Oczywiście zrobiono takie badania i rzeczywiście wchłanianie miało miejsce. W jednym z nich, związanym z programem chemoprewencji na terenach silnie zanieczyszczonych, stwierdzono że po czterech miesiącach suplementacji 300 mg chlorofiliny dziennie, osiąga ona poziom 2,0 ug / ml osocza. Nie są to zatem duże ilości, jednak daje się je wykryć[5] Pytanie tylko, co z tego.
Chlorofilina jest nieco podobniejsza do hemu, ale się w niego nie zamienia. Badając przemiany podczas produkcji jedzenia, znaleziono i takie chlorofiliny, które miały za atom centralny żelazo. Ale nie były hemem.

No dobra. Pokrytykowałem już dosyć, czas abym zaczął chwalić (choć ostrożnie).

Jest korzyść z zażywania chlorofilu i pochodnych, na tyle istotna, że uzasadniałaby suplementację. Nie ma on jakichś nadzwyczajnych właściwości, ale może tworzyć związki kompleksowe z substancjami rakotwórczymi, to jest z nitrozoaminami, wielopierścieniowymi związkami aromatycznymi, mikotokynami i niektórymi dioksynami. Prawdopodobnie pomiędzy płaskimi cząsteczkami aromatycznymi zachodzi przeniesienie ładunku, do tworzy kompleksy typu EDA.
Przykładem jest badanie na mieszkańcach chińskiej prowincji Qidong, którzy bardzo często zapadają na raka wątroby, z powodu aflatoksyn zawartych w zapleśniałym jedzeniu. Podawanie chlorofiliny zredukowało wchłanianie toksyny o 55%[6]
Co ciekawe, podobne działanie wykazuje chlorofil, choć bowiem rozkłada się w żołądku, pochodna feofityna też może tworzyć takie kompleksy. Łącząc się z substancjami rakotwórczymi w przewodzie pokarmowym i hamując ich wchłanianie, zmniejsza zatem ryzyko raka w sytuacji ciągłego narażenia na takie substancje. Wydaje się jednak, że z uwagi na słabe wchłanianie nie ma większego znaczenia w procesach usuwania już wchłoniętych toksyn. Interesująca jest praca porównująca działanie ochronne chlorofilu i chlorofiliny na komórki wyściółki jelita pod wpływem wolnego hemu. Niektóre substancje i leki, np. luminal, mogą powodować rozpad czerwonych krwinek. Hem, uwolniony do osocza, działa toksycznie na wspomniane komórki. Chlorofil, a ściślej jego bezmagnezowe pochodne znacząco zmniejszają ten efekt, prawdopodobnie wiążąc hem kompleksem kanapkowym, natomiast chlorofilina miedziowa, nie wykazuje takiego działania[7]

Natknąłem się jeszcze na wzmianki o badaniach w których wykazano, że chlorofil hamuje wzrost komórek niektórych nowotworów, ale to były badania in vitro, na wyizolowanych komórkach traktowanych roztworem. Nie wiadomo czy w tych samych warunkach nie działałyby tak samo i na zdrowe, więc jak dla mnie to słaby dowód.[5]

Na koniec zajmę się jeszcze sprawą działania dezodoryzującego, które przypisuje się chlorofilowi. Właściwie nie znalazłem dobrego objaśnienia w jaki sposób miałby wpływać na zapach potu czy jamy ustnej, w sytuacji gdy jest on związany głównie nie z metabolizmem lecz z działalnością bakterii, które rozkładają składniki potu lub resztki jedzenia, tworząc nieprzyjemnie pachnące związki. Przez pierwszych kilka godzin pot jest praktycznie bezwonny. Ponieważ wchłanianie do organizmu jest niskie, raczej mało prawdopodobne aby mógł wydzielać się z potem w takich ilościach, aby na bieżąco kompleksować powstające związki.
Wiem natomiast o zastosowaniach do minimalizowania zapachu kału u chorych obłożnie, którzy załatwiają się do odpowiednich pojemników (wiem że kaczka jest na mocz, ale co jest na kał?).
Chlorofilina ma też zastosowanie w chorobie genetycznej trimetyloaminurii. Jest to jedna z chorób metabolicznych, polegająca na niedoborze enzymu rozkładającego trimetyloaminę - związek o rybim zapachu powstający z rozkładu białek. Odpowiada za woń nieświeżych ryb. U osób chorych na TMAU brak enzymu powoduje gromadzenie się aminy w organizmie, co powoduje okropną woń wydzielin, a więc moczu, kału, potu i śliny. Chlorofilina podawana doustnie może zminimalizować lub usunąć objawy, podobnie jak zażywanie węgla aktywnego[8], co wiąże się z wiązaniem TMA w przewodzie pokarmowym, gdzie powstaje jej najwięcej przy udziale bakterii jelitowych. Znalazłem jednak informację, że u niektórych chorych, suplementacja tym związkiem nie działa.
Uff!

Podsumowując:

Chlorofil cię nie natleni. Niestety nie zamieni się w krew, bo jego cząsteczka jest odmienna od hemu. Jest raczej kiepskim dostarczycielem magnezu. Może mieć natomiast znaczenie w profilaktyce zapobiegania nowotworom.

Tak więc być może puszka szpinaku nie pomoże wam w walce z przeciwnościami losu (chyba że to będzie ciężka puszka w skarpecie), ale trochę zieleniny raz na jakiś czas, nie zaszkodzi.

------
Źródła i przypisy:

[1] http://www.zielonazywnosc.pl/index.php?id_stranky=27
[2] http://www.cudownyportal.pl/article.php?article_id=1353

[3] Assessment of Degradation and Intestinal Cell Uptake of Carotenoids and Chlorophyll Derivatives from Spinach Puree Using an In Vitro Digestion and Caco-2 Human Cell Model, J. Agric. Food Chem.,
2001, 49 (4), pp 2082–2089
[4] Absorption of phytol from dietary chlorophyll in the rat, JOURNAL OF LIPID RESEARCH VOLUME 8. 1967
[5] Digestion, absorption, and cancer preventative activity of dietary chlorophyll derivatives, Nutrition Research, 27 (1), p.1-12, Jan 2007
[6] Chlorophyllin intervention reduces aflatoxin–DNA adducts in individuals at high risk for liver cancer, Proc Natl Acad Sci US A. 2001 December 4; 98 (25) : 14601–14606.
[7] Natural Chlorophyll but Not Chlorophyllin Prevents Heme-Induced Cytotoxic and Hyperproliferative Effects in Rat Colon, J.Nutr 135:1995-2000, August 2005
[8] Effects of the dietary supplements, activated charcoal and copper chlorophyllin, on urinary excretion of trimethylamine in Japanese trimethylaminuria patients., Life Sci. 2004 Apr 16;74(22):2739-47


Dłuższy przegląd badań na stronach Instytutu Linusa Paulinga