informacje



niedziela, 30 października 2016

Dlaczego osm jest najgęstszym pierwiastkiem?

Witam po dłuższej przerwie.

Jak to mamy możliwość obserwować na co dzień, substancje i materiały różnią się między sobą między innymi tym, że podobnej wielkości kawałki mają różny ciężar. Klocki drewna rzucone na wodę pływają łatwo, bryły lodu wynurzają nad powierzchnię tylko końcówki a kamień tonie. Miarą tej właściwości jest gęstość, czyli masa mieszcząca się w danej objętości. Na gęstość wpływają różne cechy, na przykład porowatość potrafiąca znacznie zmniejszyć gęstość materiału (niektóre aerożele są niemal tak lekkie jak powietrze), zawartość wody, ale w większym stopniu rodzaj substancji.

Najgęstszym materiałem na ziemi jest metaliczny osm, metal szlachetny podobny do platyny. Jego gęstość to ok. 22,65 g/cm3, co oznacza, że kostka o boku 10 cm waży 22,5 kg. Jest dwa razy gęstszy od ołowiu, który już jest uważany za bardzo ciężki. Gęstością dorównuje mu tylko iryd (niektóre pomiary pokazują nawet nieco większą gęstość irydu ale to już zależy od sposobu pomiaru). W związku z tym rodzi się oczywiste pytanie - dlaczego osm jest aż tak ciężki?

Jedną z oczywistych przyczyn, jest jego wysoka masa atomowa - 190,23 u. Jego atomy są więc ciężkie i ta sama ich ilość waży więcej niż dla wielu innych metali. Jednakowoż nie jest osm wcale najcięższym pierwiastkiem, większą masę atomową (207 u) ma choćby ołów, który ma przecież dwa razy mniejszą gęstość

Kolejnym czynnikiem warunkującym jest promień atomowy, czyli wielkość atomu liczona do ostatniej powłoki elektronowej. Im mniejsze są atomy tym więcej może się ich zmieścić w tej samej objętości. W układzie okresowym dają się zauważyć dwie ogólne reguły wielkości atomów - pierwsza jest dość oczywista - w dół wielkość atomów rośnie, mają bowiem coraz bardziej dodatnie jądro, coraz większą ilość elektronów a w związku z regułami ich upakowania w przestrzeni, coraz więcej sięgających dalej powłok na których mogą się pomieścić.
 Druga jest natomiast mniej intuicyjna - wzdłuż okresu, od lewej do prawej, atomy się zmniejszają, mimo że krąży wokół nich coraz więcej elektronów. Wynika to stąd, że w okresie nie przybywają nowe zewnętrzne powłoki elektronowe, a elektrony zapełniają jedynie odpowiednie dla danego bloku podpowłoki, najpierw s, potem p, a dla cięższych pierwiastków też d i f. Natomiast ze wzrostem masy jądra rośnie ładunek przyciągający elektrony, co zmniejsza całkowitą średnicę atomu.
 Efekt ten najwyraźniejszy jest w górnych okresach. W dolnych okresach zmniejszanie się średnic atomów jest nawet większe niż by to wynikało z samego zwiększenia ładunku jądra. Tłumaczy się to bardzo słabym osłanianiem ładunku jądra przez orbital f, przez co najbardziej zewnętrzne elektrony czują przyciąganie nieco silniej.

Osm znajduje się w najniższym okresie z trwałymi pierwiastkami, mając w sobie także słabo ekranujący orbital f, jest zatem bardzo masywnym atomem, którego średnica nie jest tak duża jak to by można oczekiwać. Tyle tylko, że jeszcze mniejsze atomy ma wspomniany ołów, więc musi tu dokładać się jeszcze dodatkowy efekt.

Metale w stanie stałym nie stanowią po prostu atomów ułożonych jeden obok drugiego. Są połączone wiązaniami poprzez uwspólnione elektrony, związane na tyle słabo. że przeskakują z atomu na atom, tworząc zdezorganizowany "gaz elektronowy". To dzięki nim metale przewodzą prąd i ciepło, oraz dobrze odbijają światło. Połączenie dwóch atomów wiązaniem przybliża je do siebie, i to tym bardziej im większa jest energia tego wiązania. Na to więc jak dużo masy możemy zmieścić w objętości, będzie wpływała długość wiązania metalicznego.
Osm znajduje się w układzie okresowym w bloku D, co oznacza że zewnętrzne elektrony walencyjne pochodzą z orbitalu d mieszczącego 10 elektronów w 5 powiązanych parach. Podczas tworzenia wiązań z innymi atomami w metalu tworzą się orbitale molekularne, na które wchodzą elektrony, odchodząc od stanu podstawowego. W kolejnych, coraz cięższych atomach, na orbital molekularny wchodzi coraz więcej elektronów, przez co wzrasta uśredniona siła wiązania. Jednak po minięciu połowy pojemności orbitalu, w cięższych atomach elektrony zaczynają tworzyć pary co zmniejsza ich zdolność do wiązania. W efekcie najsilniej związane są atomy w metalach leżących w połowie bloku D a najsłabiej te leżące na początku i końcu. Silniej związane atomy leżą bliżej siebie i więcej się ich zmieści w danej objętości.
Miarą tych oddziaływań jest energia kohezji, która wzrasta w dół grupy i do środka bloku. Największą energię kohezji ma wolfram, zaraz za nim tantal, ren, osm i iryd, potem energia dość szybko spada. Przekłada się to wprost na temperatury topnienia i wrzenia - najtrudniej topliwym metalem jest wolfram, po nim ren, tantal i osm.

Podsumowując
Spróbujmy więc podsumować wszystkie efekty - osm leży w dość daleko w układzie okresowym i ma wysoką masę atomową, ale ze względu na wysoki ładunek jądra wielkość jego atomów nie jest tak duża. Znajduje w najniższym okresie z trwałymi pierwiastkami i tuż za środkiem bloku D, co przekłada się na wysoką energię kohezji i krótkie wiązania metaliczne. W związku z tym w danej objętości zmieścić się może dużo jego masywnych atomów. Wprawdzie są pierwiastki o większej od niego energii kohezji, ale po pierwsze o nieco mniejszej masie atomowej a po drugie o nieco większej średnicy atomów w stanie podstawowym. Są też pierwiastki o dużo mniejszych atomach i większej masie, ale wyraźnie mniejszej energii kohezji.
Po prostu trzy funkcje regulujące gęstość pierwiastków przebiegają tak, że ich suma osiąga minimum dla tego pierwiastka. Dla któregoś musiało się trafić. Ze względnie dużej, mimo pewnego spadku, energii kohezji korzysta jeszcze iryd, który jest drugim najgęstszym pierwiastkiem.

Czy to już koniec? Nie stworzymy jeszcze gęstszych materiałów? Cóż, sztucznie otrzymaliśmy jeszcze cięższe pierwiastki, uzupełniające 7 okres. Jeśli powyższe prawa stosują się do nich tak samo, to pierwiastki pośrodku okresu powinny być bardzo ciężkie i z wysoką energią kohezji. Teoretyczne obliczenia pokazują, że metaliczny has (Hs) o liczbie atomowej 108, który leży w układzie okresowym pod osmem, powinien mieć gęstość 41 g/cm3, a więc dwa razy większą. Jednak ze względu na bardzo krótki okres półtrwania, wynoszący około minuty dla najtrwalszych izotopów, zmierzenie tego bezpośrednio jest niemożliwe.

ed.
Gęstość metali rośnie wraz ze spadkiem temperatury. Dla irydu współczynnik objętościowej kurczliwości temperaturowej jest nieco większy niż dla osmu, a ponieważ ich gęstości są zbliżone pojawiają się przypuszczenia, że w bardzo niskich temperaturach, rzędu 50 K iryd może jednak wyprzedzać osm.[1] Pomiar gęstości w tak niskich temperaturach jest jednak nieco kłopotliwy i nie wiele było takich badań a teoretyczne wartości na tyle się zbliżają, że różnica staje się mniejsza niż granica błędu. Kto wie, może jednak przy dokładniejszych badaniach okaże się, że osm jest najgęstszy tylko w pewnym zakresie temperatur?
------------
[1]  John W. Arblaster, Is Osmium Always the Densest Metal?, Johnson Matthey Technol. Rev., 2014, 58, (3), 137 doi:10.1595/147106714x682337

*  https://en.wikipedia.org/wiki/Lanthanide_contraction
* https://en.wikibooks.org/wiki/Introduction_to_Inorganic_Chemistry/Metals_and_Alloys:_Structure,_Bonding,_Electronic_and_Magnetic_Properties
* https://www.itp.tu-berlin.de/fileadmin/a3233/upload/SS12/TheoFest2012/Kapitel/Chapter_6.pdf
http://pubs.acs.org/doi/pdf/10.1021/ct500532v

wtorek, 13 września 2016

Chemiczne wieści (9.)

Reakcja w kroplach nad rozgrzaną blachą
Efekt Leidenfrosta jest jednym z tych ciekawych zjawisk fizycznych, jakie z pewnością każdy miał okazję obserwować, tylko nie specjalnie zastanawiał się nad jego przyczyną. Upuszczenie kropli wody na bardzo rozgrzaną blachę, kuchenkę elektryczną czy patelnię powoduje, że zamiast zwyczajnie odparować przez pewien czas szybko śmiga niczym mały poduszkowiec.
Odpowiednio duża różnica temperatur powoduje, że rozgrzewanie całej kropli jest wolniejsze niż odparowanie porcji najbliżej blachy. Powstająca para wodna ma ciśnienie wystarczające, aby unieść nad gorącą powierzchnię całą kroplę, która nie ma bezpośredniego kontaktu, spowalniając wyparowanie kropli wielokrotnie.

Zespół amerykańskich naukowców z Purdue University wykorzystał ten efekt, tworząc z kropelek mikroreaktory do przeprowadzenia reakcji. Wcześniej znany był już efekt przyspieszania reakcji w kropelkach powstających przy rozpryskiwania roztworów techniką elektrospreju.  Prawdopodobnie na granicy faz następowała adsorpcja naładowanych reagentów, które wobec tego były tylko częściowo solwatowane przez rozpuszczalnik. Niecałkowita otoczka solwatacyjna obniżała energię aktywacji reakcji między składnikami roztworu. Ze względu na mikroskopijne rozmiary powstających kropelek, stosunek objętości do powierzchni był bardzo korzystny. Z drugiej strony efekt obserwowano w bardzo niewielkiej ilości mieszaniny reakcyjnej, przez co trudno bylo zjawisko w jakiś sposób zastosować.

Tutaj pomysł był podobny, tylko kropelki większe, bo otrzymywane przez efekt Leidenfrosta. Za modelową reakcję posłużyła kondensacja ketonu z pochodną hydrazyny. Reagenty rozpuszczono w rozpuszczalniku i upuszczono po kropli na rozgrzane szkiełko zegarkowe, utrzymując kropelkę przez dwie minuty w stanie lewitacji. Po zbadaniu roztworu stwierdzono, że reakcja zachodziła z nawet pięćdziesięciokrotnie większą szybkością. Tą metodą można poddawać reakcji miligramowe iloci reagentów, możliwe, że nawet większe jeśli udałoby się zbudować układ w którym krople mogłyby odpowiednio długo wędrować jedna za drugą. [1]


Najsilniejszy niefluorowy utleniacz
Utlenianie to w rozumieniu chemików reakcja polegająca na odebraniu reagującemu atomowi elektronów (dezelektronacja). Tlen i zawierające go związki są dość dobrymi utleniaczami, ale nie jedynymi, przykładowo gazowy chlor reagując z metalicznym sodem odbiera mu elektron, utleniając do kationu sodowego; sam redukuje się więc do anionu chlorkowego i tworzy związek chlorek sodu, czyli sól kuchenną.

W roli utleniacza zadziałać może też elektroda z przyłożonym odpowiednim napięciem. W procesie elektrolizy jedne składniki roztworu są utleniane a inne redukowane, lecz materiał elektrody nie ulega w tych procesach przemianom, jest jedynie przekaźnikiem elektronów które są przez potencjał elektryczny bądź wyciągane bądź wpychane w reagującą cząsteczkę. Oczywiście aby doszło do reakcji i aby elektron przeskoczył z miejsca na miejsce, należy użyć odpowiednio dużej energii, a w tym przypadku przyłożyć do elektrody odpowiednio duże napięcie, poniżej którego reakcja nie zajdzie.
Dzięki temu badając napięcie przy którym na elektrodzie następuje dana reakcja, można porównać związki i ich skłonności do oddawania lub przyjmowania elektronów, a tym samym moc różnych reduktorów lub utleniaczy. Zajście reakcji utlenienia przy pomocy danego utleniacza, to odpowiednik potencjału X woltów. Stąd biorą się tabele potencjałów standardowych, jakie zapewne widzieliście w podręcznikach. Z tego jaką wielkość mają potencjały dwóch substancji i jaka jest między nimi różnica, można zgadnąć czy zajdzie nimi reakcja redoks i w którą stronę. Ten który ma potencjał bardziej dodatni, będzie utleniaczem, ten który będzie miał potencjał bardziej ujemny będzie reduktorem. Im większy jest między nimi odstęp, tym energiczniej zachodzi reakcja, a więc tym chętniej.
Dla układów pośrodku skali potencjałów (standardowo za 0 przyjmuje się potencjał reakcji redukcji kationów wodorowych), substancje zależnie od tego z czym się spotkają mogą być utleniaczami lub reduktorami. Na dodatnich i ujemnych krańcach skali znajdują się związki i jony pierwiastków, które zwykle traktuje się po prostu jak utleniacze lub reduktory zawsze, bo na przykład osiągnęły maksymalną wartościowość której już nie zwiększą albo nie bardzo mają okazję przereagować z czymś silniejszym (ale czasem mają - nadtlenek wodoru, generalnie utleniacz, w reakcji z jonami srebra redukuje je do obojętnego metalu, a sam utlenia się do... tlenu).

Generalnie w takim ujęciu za utleniacze silne uznaje się już układy o potencjale standardowym powyżej +2 V. Utleniaczem silnym jest więc na przykład nadsiarczan sodu (E0= +2 V), od niego silniejszy jest pierwiastkowy fluor (E0= +2,8 V), kwas ksenonowy (+2,5 V), i różne układy oparte o fluor lub chlor. Do najsilniejszych należy rodnik fluorowy, który w reakcji z kationem wodoru utlenia go z potencjałem +3,87 V i difluorek kryptonu KrF2 o potencjale +3,27 V.
Fluor pojawia się tutaj nieprzypadkowo - pierwiastek ten ma wysoką elektroujemność, co oznacza że trudno go zjonizować, oraz ze chętnie przyciąga elektrony. Najsilniejsze znane utleniacze są więc związkami fluoru. Przynajmniej aż do teraz.

Grupa badaczy z Uniwersytetu Warszawskiego opublikowała niedawno wyniki eksperymentów z otrzymaniem bardzo silnego utleniacza, jakim okazały się kationy srebra II. Jest to dla srebra stan utleniania bardzo nietrwały, stąd duża energiczność reakcji dzięki której może przejść w bardziej trwały kation srebra I. W specyficznych warunkach stężonego oleum, które wpływają na przebieg reakcji, utlenienie przy pomocy srebra II osiąga potencjał standardowy +2,9 i jest najwyższą znaną wartością dla utleniaczy nie zawierających fluoru. Prawdopodobnie kationy metalu są solwatowane przez cztery cząsteczki kwasu, co ma duże znaczenie dla potencjału utleniania. Utleniacz o takiej sile mógłby być użyty do rozkładu niektórych trudnych do przetworzenia zanieczyszczeń.[2]

Niskotemperaturowa synteza amoniaku
Jednym z najbardziej znanych procesów przemysłowych, wykorzystywanym na gigantyczną skalę, jest synteza amoniaku z azotu, pozwalająca na otrzymanie związków azotowych, zużywanych potem głównie do produkcji nawozów sztucznych. Najpospoliciej stosowaną obecnie jest metoda Habera-Bosha, polegająca na reakcji wodoru i azotu pod ciśnieniem kilkuset atmosfer i temperaturze 500 stopni, z użyciem katalizatora żelazowego. Mimo tych ekstremalnych warunków metoda jest opłacalna. Wcześniej próbowano takich reakcji jak otrzymywanie azotku magnezu i rozpuszczanie go w kwasach, czy hydroliza cyjanamidu wapniowego (tzw. azotniak).

Jednak ostatnia praca chińskich badaczy z Dalian Institute of Chemical Physics pokazuje że potencjalnie możliwe jest przeprowadzenie tego procesu w bardziej łagodnych warunkach.

Zespół pierwotnie zajmował się badaniem materiałów do pochłaniania i przechowywania wodoru. Podczas cykli wygrzewania oprócz wodoru powstawały też pewne ilości amoniaku, wskutek niepożądanej reakcji ubocznej. Dość przypadkowo, podczas symulacji sprawdzających przebieg tej reakcji, badacze stwierdzili że proces uwodornienia azotu jest sam w sobie dość obiecujący. Zachodzące podczas syntezy procesy obejmują adsorpcję azotu na metalu, aktywizację cząsteczki, przyłączenie wodoru i dysocjację. Idealny katalizator powinien dobrze aktywować azot ale też słabo wiązać aktywowaną cząsteczkę. niestety w przypadku metali przejściowych dobre wiązanie i aktywizowanie azotu wiązało się też z trudnym odłączaniem zaktywizowanej formy. Właśnie konieczność odłączenia cząsteczki od katalizatora powodowała, że potrzebna była tak wysoka temperatura.
Pomysł Chińczyków był generalnie dość prosty - należy użyć dodatkowego katalizatora. Tym katalizatorem okazał się wodorek litu.

Centrum reakcyjne ma postać drobnych plamek wodorku litu na powierzchni katalizatora metalicznego. Cząsteczka azotu przyłącza się w pobliżu, w związku z utworzeniem wiązania azot-metal zostaje zaktywizowana. Pobliski wodorek litu jest reduktorem, oraz odszczepia bardzo reaktywny anion wodorkowy. W efekcie pobliska cząsteczka azotu zostaje zredukowana i odszczepiona, równocześnie z przyłączeniem wodoru. Powstający amidek litu reaguje z wodorem, odnawiając wodorek litu i odłączając amoniak.
Taki podwójnie katalizowany proces może być przeprowadzony w dużo łagodniejszych warunkach. Dla katalizatora żelaznego z domieszką wodorku litu proces zachodził wydajnie już w temperaturze 150 stopni Celsiusza. [3]

Rośliny oczyszczają domowe powietrze
Powietrze w domach i mieszkaniach różni się od tego napływającego z zewnątrz. Nie dość, że dostają się do niego związki wydzielane przez nas samych, uwalniane podczas gotowania czy codziennej toalety, to jeszcze swoje dokładają lotne składniki farb, materiałów budowlanych, mebli i elementów wystroju wnętrz. Niektóre z nich mogą mieć działanie szkodliwe, dlatego dobrze jest co jakiś czas wietrzyć mieszkanie. Zaleganie toksycznych oparów w pomieszczeniach, uwalnianych przez ściany i sprzęty domowe, jest niekiedy wiązane z "zespołem chorego budynku" powodującego różne, często trudne do określenia dolegliwości, jak bóle głowy, alergie, napady astmy, uczucie zmęczenia.
Do sposobów unikania tego zjawiska należy polepszenie wentylacji i napływu powietrza z zewnątrz lub stosowanie filtrów pochłaniających. Znane były też badania sugerujące, że pewne związki mogą pochłaniać z powietrza rośliny doniczkowe.

Zespół amerykańskich badaczy postanowił precyzyjniej porównać zdolności oczyszczania powietrza przez różne gatunki w tej samej przestrzeni. Wzięto pięć gatunków często używanych jako rośliny doniczkowe i sprawdzano jak ich obecnośc wpływa na stężenia lotnych związków w specjalnie przygotowanej komorze. Były to: zielistka, dracena, bromelia guzmania, grubosz (znany też jako drzewko szczęścia) i kaktus Consolea.
Przetestowano ich aktywność na ośmiu przykładowych związkach, stwierdzając że pewne gatunki mają wyjątkowo dużą skłonność do wchłaniania niektórych. Przykładowo dracena wchłaniała 90% acetonu obecnego w powietrzu. Najlepszą z badanych okazała się bromelia, która dla sześciu lotnych związków eliminowała 80% obecnej ilości.[4]


Prosta i tania metoda otrzymywania
Wiele substancji znajdujących ciekawe zastosowania bądź występuje w naturze zbyt rzadko aby możliwe było tanie ich pozyskanie, bądź nie występuje w niej w ogóle. Dlatego trzeba je otrzymywać przy pomocy metod syntetycznych. Jednak w przypadku niektórych skomplikowanych cząsteczek, synteza przestaje być tak dobrą alternatywą, jeśli jest złożona z wielu etapów w których zużywa się wiele różnorodnych reagentów, tym bardziej, że im więcej etapów pośrednich tym mniejsza wydajność końcowa. 10 etapów o wydajności 80% przekłada się na wydajność całkowitą 10%
Dlatego też chemicy szukają sprytnych sposobów aby konstruować cząsteczki w mniejszej ilości etapów, szybciej i z mniejszą ilością reagentów. Takimi prostymi skokami omijającymi parę etapów są reakcje wieloskładnikowe, gdy to reakcję przeprowadzamy na mieszaninie kilku składników, które w trakcie tego samego procesu reagują ze sobą w określonej konfiguracji; reakcje kaskadowe gdy odpowiednio skonstruowana cząsteczka ulega serii wewnętrznych przekształceń, oraz reakcje rednoreaktorowe (one pot) gdy kolejne etapy są dokonywane dolewając następne reagenty do mieszaniny po poprzedniej reakcji, bez często żmudnego procesu izolowania czystych produktów pośrednich.

Przykładem może być praca jaka wpadła mi w oko, opisująca nową metodę syntezy (-)-ambroksanu, terpenoidu będącego głównym składnikiem zapachowym naturalnej ambry. Ta naturalna jest rzadka i droga i nie sposób zwiększyć jej pozyskania*, dlatego główny pachnący związek otrzymuje się syntetycznie.
Związkiem wyjściowym jest sklareol, otrzymywany z olejku eterycznego szałwii muszkatołowej, bo to najtańsze źródło. Cząsteczka jest generalnie bardzo podobna do ambroksanu, należy jedynie zamknąć trzeci pierścień w formie eteru i odrzucić niepotrzebne dwa węgle, ale bez zmiany konfiguracji jednego centrum stereogenicznego:
Opisano kilka metod przeprowadzenia takiej reakcji, które są wykorzystywane w przemyśle, mają one jednak tą wadę, że są przeprowadzane w kilku etapach. Czyli substancja wyjściowa jest poddawana reakcji, po której półprodukt jest oddzielany i używany do następnego etapu. Każdy taki proces następuje ze skończoną wydajnością, sumą kilku procesów jest bardzo mała wydajność końcowa, do tego dochodzą koszty zużytych w każdym etapie odczynników. Dlatego nowa metoda w której używa się tylko dwóch odczynników a całą reakcję przeprowadza się w jednym etapie bez oddzielania związków pośrednich z pewnością wzbudzi zainteresowanie przemysłu.

Sklareol jest rozpuszczany w dioksanie, dodawany jest utleniacz czyli 30% nadtlenek wodoru i katalizator będący fosfomolibdenianem alkiloamoniowym, mieszanina jest ogrzewana najpierw przez dwie godziny w temperaturze 70 stopni a potem godzinę w 90 stopniach. I tyle.  Wydajność to nieco ponad 20%, jest więc jedynie nieco wyższa niż w poprzednich metodach, ale być może da się to jeszcze usprawnić.
Reakcja przebiega prawdopodobnie poprzez utworzenie epoksydu, który cyklizuje i ulega przegrupowaniu.[5]


------
* Ambra to grudki masy będącej zastygniętymi wymiocinami kaszalota, który najadł się zbyt dużo kałamarnic olbrzymich żyjących w głębinach oceanów. Jak na razie nikomu nie udało się ich pod tym kątem tresować.

[1] Bain RM, Pulliam CJ, Thery F, Cooks RG. Accelerated Chemical Reactions and Organic Synthesis in Leidenfrost Droplets, Angew Chem Int Ed Engl. 2016 Aug 22;55(35):10478-82
[2] Połczyński P.,Jurczakowski R., Grochala W., Stabilization and strong oxidizing properties of Ag(II) in a fluorine-free solvent, Chem. Commun., 2013,49, 7480-7482
[3] Peikun Wang et al, Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation, Nature Chemistry (2016).
[4] https://www.acs.org/content/acs/en/pressroom/newsreleases/2016/august/selecting-the-right-house-plant-could-improve-indoor-air-animation.html
[5] Yang, S. et al. One-pot synthesis of (−)-Ambrox. Sci. Rep. 6, 32650; doi: 10.1038/srep32650 (2016).

wtorek, 23 sierpnia 2016

Chemiczne wieści (8.)

Naturalne kompleksy szkieletowe
To akurat odkrycie nie było dla mnie zaskakujące, bo od dawna sądziłem że do niego dojdzie - geolodzy znaleźli na Syberii minerał będący naturalną formą metalo-organicznych szkieletów (MOF) materiałów o dużej porowatości na poziomie cząsteczkowym, o ciekawych właściwościach katalitycznych.

MOFy to interesująca grupa materiałów, będąca w zasadzie usieciowanymi kompleksami wielordzeniowymi - kationy metalu stanowią zworniki sieci tworzonej przez ligandy mogące łączyć się z nimi na dwóch lub więcej końcach. Między nimi powstają puste przestrzenie o zdefiniowanej, określonej wielkości i kształcie, stąd użycie MOFów jako absorbentów do gazów, ale też katalizatorów. Dotychczas wytwarzano je wyłącznie laboratoryjnie.

Przebadanie nowymi technikami rentgenowskimi słabo dotychczas poznanych minerałów stepanowitu (stepanovite) i żemczużnikowitu (zhemchuzhnikovite)* , znalezionych w syberyjskich kopalniach już w latach 60. ujawniło, że są takimi właśnie naturalnymi MOFami. Chemicznie są to mieszane szczawiany żelaza i magnezu, z występującymi w wolnych przestrzeniach jonami sodu i domieszką innych metali; w żemczużnikowicie pewna ilość jonów trójwartościowego żelaza jest wymieniona na podobne wielkością jony glinu[1]
Strukturę potwierdzono dokonując syntezy kryształów o takim składzie.



Najlżejsza cząsteczka pi-aromatyczna
Aromatyczność to szczególny przykład stabilizowania cząsteczki przez rezonans struktur elektronowych.  Wolne pary elektronowe tworzą w takich cząsteczkach płaski, pierścieniowaty orbital na którym ładunek jest równomiernie rozprowadzony, a elektrony wirują jak po karuzeli. Najlepiej przebadana jest aromatyczność związków węgla, natomiast słabiej przebadane są tego typu połączenia zbudowane wyłącznie z innych pierwiastków.

W szeregu węglowodorów aromatycznych najmniejszą cząsteczkę miał kation cyklopropenyliowy, ze zdelokalizowanym układem dwóch elektronów na trójkątnej cząsteczce. Wykazano, że podobny układ mogą tworzyć też inne pierwiastki, krzem, fosfor, glin

Obecnie odkryto prawdopodobnie najlżejszy możliwy taki układ - kation borocyklopropyliowy stabilizowany lekkimi ligandami. Badania spektroskopowe oparów boru poddanych działaniu lasera w obecności odpowiednich gazów, wykazały istnienie względnie stabilnych kationów [B3(NN)3]+ i  [B3(CO)3]+ . Ze względu na małą masę atomową boru, mniejszą niż dla węgla, i małą masę stabilizujących ligandów, są to najlżejsze cząsteczki pi-aromatyczne. [2]

Nieco wcześniej utworzono stabilne kompleksy zawierający pierścień triborocyklopropyliowy, zobojętnione kationami sodu, ale ligandy były dość rozbudowane a pierścienie tworzyły dimer w formie kompleksu kanapkowego, przez co powstała molekuła była dużo cięższa.[3]


------------
* Nazwa minerału Zhemchuzhnikovite pochodzi od angielskiej transkrypcji nazwiska mineraloga Żemczużnikowa, polska transkrypcja nazw rosyjskich jest inna ze względu na istnienie w języku tych samych głosek.

[1] Tomislav Friščić, Minerals with metal-organic framework structures, Sciences Advances,  Vol. 2, no. 8, e1600621, DOI: 10.1126/sciadv.1600621
[2] Gernot Frenking et.al. The [B3(NN)3]+ and [B3(CO)3]+ Complexes Featuring the Smallest π-Aromatic Species B3+Angew. Chem. Int. Ed. Volume 55, Issue 6, Pages 2078–2082
[3] Holger Braunshweid et.al The Triboracyclopropenyl Dianion: The Lightest Possible Main-Group-Element Hückel π Aromatic, Angew. Chem. Int. Ed. Volume 54, Issue 50,  Pages 15084–15088

niedziela, 17 lipca 2016

Reakcja w warunkach ekstremalnych

Otrzymanie odpowiednich wyników w trakcie doświadczenia chemicznego bywa bardzo trudne. Nieraz aby reakcja przebiegła w zamierzony sposób należy stworzyć specyficzne, ściśle określone warunki. Nikomu jednak nie przyszłoby do głowy, że czasem, aby wytworzyć ładne kryształy, należy wyskoczyć z samolotu z próbówką w ręku.
Bardzo emocjonujący eksperyment © University of Melbourne
Chemicy z Uniwersytetu w Melbourne w Australii badający właściwości metaloorganicznych materiałów porowatych (MOF), po sprawdzeniu wpływu jaki wywierają na ich formowanie i krystalizację temperatury, ciśnienia i wielu innych zmiennych, postanowili sprawdzić jaki wpływ może tu mieć zmiana czynnika, przyjmowanego dotychczas za stały - siły ciążenia.

Metal-Organic Frameworks czyli MOFs, co można przetłumaczyć jako "metaloorganiczne szkielety" czy rusztowania, to szczególny rodzaj materiału łączącego właściwości kryształów i ciał porowatych. Są to w zasadzie usieciowane kompleksy, w których jony metalu stanowią zworniki dla regularnej sieci utworzonej przez łączące je ligandy organiczne. Kształt, ilość miejsc wiązania i wielkość ligandów ale też rodzaj i wielkość kationu determinują kształt utworzonej sieci, mogącej przybierać wiele form na podobieństwo zeolitów.
MOFy są obecnie intensywnie badane jako niezwykle obiecujące materiały. Dzięki ogromnej porowatości na poziomie molekularnym mogą być użyte jako pochłaniacze zanieczyszczeń, magazyny gazów, nośniki leków; inne stanowią katalizatory, reaktywne filtry unieszkodliwiające zanieczyszczenia, mogą stanowić elementy czujników. Obecnie co roku publikuje się kilkaset prac na temat nowych przebadanych kombinacji i nowych metod ich otrzymywania.

Znane były już wcześniej pewne efekty grawitacyjne na szybkość krystalizacji. Grawitacja wywołuje opadanie zarodków krystalizacji na dno, gdzie proces jest hamowany w powodu ograniczenia od jednej strony dnem. Powoduje także pojawienie się prądów konwekcyjnych wokół rosnącego kryształu, w związku ze zmianami stężenia a więc i gęstości, co często ma skutek pozytywny. W szczególnych przypadkach może utrudniać powstawanie kryształów dużych molekuł powodując deformowanie się powstającej sieci.
Badacze z Australii przypuszczali, że efekty te będą wpływać także na wielkość kryształów MOFów wytrącających się z nasyconego roztworu, dlatego postanowili sprawdzić jak przebiegać będzie krystalizacja w trzech warunkach - grawitacji normalnej, obniżonej i zwiększonej.

Ten trzeci efekt był akurat dosyć prosty do sprawdzenia - rolę zwiększonej grawitacji pełni siła odśrodkowa. Mieszaninę substratów odwirowywano w wirówce poddając ją przeciążeniu kilkunastu g. Otrzymane w wyniku procesu kryształy były wyraźnie mniejsze od tych dla warunków normalnych.Natomiast uzyskanie obniżonej grawitacji było wyraźnie trudniejsze.

Początkowo badacze zrzucali próbówki z mieszaniną reakcyjną z dachu kilkunastopiętrowego budynku, otrzymując 2-3 sekundy stanu nieważności.
Wyjaśnię tutaj pokrótce, że ciała spadające swobodnie paradoksalnie nie odczuwają ciążenia. Jest to konsekwencją praw dynamiki - grawitacja jako siła działająca na ciało powoduje jego przyspieszenie, toteż ciało spadające swobodnie przyspiesza co sekundę o ok. 10 m/s2. Jednakże przyspieszenie, nie będące ruchem jednostajnym, wzbudza opór czyli bezwładność. Gdy ciało spada swobodnie obie siły się równoważą w efekcie nie czuje ono ciążenia, mimo że siła ciążenia na nie działa, wszak spada. Wykorzystuje się ten efekt w specjalnych samolotach testowych, które wykonują lot nurkowy z prędkością na tyle dużą, że ludzie na pokładzie zaczynają odczuwać nieważność i przez kilkanaście sekund poczuć się mogą jak w kosmosie.
Tak więc w zrzuconych z dachu próbówkach przez pewien czas następowało istotne zmniejszenie grawitacji (nie całkowite zniesienie przez opory aerodynamiczne miękkiego opakowania), mierzone zresztą przez badaczy przy pomocy akceleatora w telefonie komórkowym. Wpływ tego stanu na kryształy był niewielki, ale zauważalny - powstawały większe i czystsze. Jednak z powody bardzo krótkiego czasu efekt był bardzo mały.
Naukowcy zaczęli więc szukać sposobu na wydłużenie okresu małograwitacyjnej krystalizacji. Musiało być to coś sprytnego ale zarazem taniego.  O wysłaniu eksperymentu na międzynarodową stację kosmiczną ani nawet w lot paraboliczny, nie było mowy. Był też pomysł aby zrzucić próbówki z balonu na gorące powietrze albo użyć drona, ale w przypadku lotów dostępnych komercyjnie wysokość była zbyt mała, natomiast w przypadku drona nie dało się rozpocząć procesu w momencie opadania. Po podliczeniu wszystkich kosztów najtańszą opcją okazało się zrzucać badaczy z samolotu.
Czegoś trzeba trzymać się © University of Melbourne

Trzech ochotników: Mattias Bjornmalm, dr. Fabio Lisi i Matthew Faria skoczyło w tandemie z instruktorem z wysokości 4 kilometrów, ściskając w ręku specjalnie przygotowane próbówki - po wyskoku wcisnęli górną część próbówki wstrzykując jeden substrat do drugiego i zapoczątkowując krystalizację w trakcie opadania. Przez pewien czas opadali prawie swobodnie, potem instruktorzy otworzyli spadochrony, ale opadanie ze spadochronem także stanowiło okres o pewnym zmniejszeniu odczuwanego przez kryształy ciążenia. Dla Farii był to pierwszy skok ze spadochronem w życiu.
  Później co prawda okazało się że niektóre próbówki wcisnęły się przedwcześnie a w innej substraty się nie zmieszały, ale udało się odzyskać trzy próbki które krystalizowały podczas lotu. Jak się okazało zmniejszona grawitacja zauważalnie wpłynęła na wielkość kryształów - powstały większe i z mniejszą ilością wad.
Po lewej - kryształy w warunkach normalnego ciążenia; po prawej - hodowane podczas skoku.  © Dr Joseph Richardson et. al
Dla pewnych zastosowań, jak katalizatory czy pochłaniacze gazów, większe i bardziej regularne kryształy MOFów są bardziej przydatne, toteż możliwe że w przyszłości pewne procesy technologiczne będą wykonywane na orbicie (lub w lotach parabolicznych). Do innych zastosowań, jak nośniki leków, lepsze są drobniejsze kryształki, toteż odkrycie że wielkość można regulować przy pomocy wirówek może szybko znaleźć zastosowanie.

------------
* Joseph J. Richardson et al. Controlling the Growth of Metal-Organic Frameworks Using Different Gravitational-Forces, European Journal of Inorganic Chemistry (2016). 

środa, 13 lipca 2016

Chemiczne wieści (7.)

Bateria z jajka
Każdy kto często spożywa jajecznicę wie, że skorupki są odpadem nieco kłopotliwym. Od wewnętrznej strony skorupka jest pokryta białkową błoną. Białko to chętnie gnije po wyrzuceniu do kosza i dorzuca do woni śmieci specyficzny, zgniłojajeczny aromat. Fakt ten jest też zresztą przeszkodą w przetwarzaniu odpadowych skorupek - zarówno przy przerabianiu na suplement diety jak i na dodatek wapnujący do gleby należy oddzielać błonkę, zwykle za pomocą odpowiednich chemikaliów.

Chemicy z Wayne State University w Detroit znaleźli natomiast sposób jak wykorzystać nieoczyszczoną skorupkę do syntezy materiału na elektrody do baterii litowych.


Metoda jest bardzo prosta - nie rozgniecioną skorupkę z jajka umieścili w naczyniu z roztworem wodorotlenku sodu, do środka skorupki dodali natomiast roztwór soli kobaltu. Skorupka posłużyła tu za porowatą, półprzepuszczalną przegrodę, przez którą powoli do wnętrza dyfundowały aniony hydroksylowe OH-. Na podściełającej skorupkę błonie wytrącała się warstewka amorficznego wodorotlenku kobaltu pokrywająca włókna białka.
Po czterech dniach skorupkę wyjęto i wysuszono, po czym już suchą poddano wyprażaniu bez dostępu powietrza w temperaturze 650 stopni. Włókna białkowe uległy wówczas zwęgleniu uwalniając siarkę, która reagowała z kobaltem, tworząc nanopręty siarczku kobaltu osadzone na włóknach węglowych.
Materiał ten może być potem przetworzony na porowatą elektrodę w pewnym typie baterii jonowych, chociaż nie znalazłem w pracy oryginalnej szczegółów na temat oddzielania włókien od skorupki.

Autorzy spekulują, że metoda mogłaby być zastosowana dla wykorzystania skorupek jaj rozbijanych maszynowo, gdzie jest to raczej odsysanie zawartości niż rozbicie, toteż po procesie zostają skorupki w dużym stopni całe.[a]

Imiona nowych pierwiastków
Zaledwie w styczniu oficjalnie uznano istnienie czterech nowych pierwiastków (o czym już pisałem) a już pojawiają się bardziej konkretne propozycje nazw. Grupy badaczy uznane za odkrywców mogą zgłosić własne propozycje nazw, które będą potem brane pod uwagę podczas podejmowania decyzji. Mogą być to nazwy odnoszące się do mitologii, do miejscowości lub minerałów, krajów lub regionów, charakterystycznej własciwosci pierwiastka lub honorujące jakiegoś znanego naukowca. Wedle tych zasad zespoły odkrywców zaproponowały:

- Zespół Riken z Japonii, uznany za odkrywców pierwiastka 113, proponuje nazwę "Nihonium" (Nh) od słowa "nihon" będącego jedną z dwóch nazw Japonii w języku japońskim.

- Zespół z Dubnej w Rosji który odkrył pierwiastek 115 proponuje nazwę "Moscovium) (Mv) od zlatynizowanej nazwy Moskwy.

- Ponieważ zarówno pierwiastek 115 i 117 odkryty został w ramach współpracy ośrodków w Dubnej w Rosji i w Oak Ridge w USA, dla tego drugiego zaproponowano nazwę Tennessine (Tn) od nazwy stanu w którym znajduje się kilka ośrodków badań jądrowych

- Pierwiastek 118 odkryto w ramach współpracy ośrodka w Dubnej i w Berkley, a jako nazwę zaproponowano Oganesson dla uczczenia profesora Jurija Oganessaja, pioniera badań nad poszukiwaniami transuranowców.

Jeśli nazwy zostałyby przyjęte przez IUPAC, to prawdopodobnie zostałyby spolszczone do "nihon", "moskow", "tennesyn" i "oganess". Nie brzmi to zbyt dobrze.[b]

Wystarczy jeden atom
Platyna od dawna znana jest ze swych świetnych właściwości katalitycznych i jest na dużą skalę używana w przemyśle, ale też na przykład jako składnik katalizatorów samochodowych. Poza łatwością zatruwania od pewnych domieszek ma platyna pewną istotną wadę - jest droga. Dlatego też chemicy od dawna starają się jak mogą zmniejszać jej ilość w katalizatorze przy zachowaniu zdolności do przyspieszania reakcji. W zasadzie nie używa się już czerni platynowej to jest jej bardzo drobnych cząstek, lecz raczej różnych materiałów porowatych pokrytych drobnymi ilościami platyny na powierzchni.
Ostatnia praca badaczy z Singapuru pokazuje, że można pójść jeszcze dalej.

Zastosowany przez nich katalizator składał się głownie z porowatego węgla na którego powierzchni osadzono klastry kwasu polifosforanomolibdenowego z przyłączonym jednym atomem platyny (PMo12O403−) Pt . Z jego użyciem możliwe było przeprowadzenie reakcji uwodorniania takich związków jak nitrobenzen, cykloheksanon czy styren, z nienajgorszymi wydajnościami (30-40%) przy stosunkach ilości platyny do substratu od 1:100 do 1:2000, a przy przedłużeniu czasu reakcji udało się nawet niemal całkowicie uwodornić substrakt przy stosunku 1:8000. [c]

------------
[a] X. Meng and Da Deng. Trash to Treasure: Waste Eggshells Used as Reactor and Template for Synthesis of Co9S8 Nanorod Arrays on Carbon Fibers for Energy Storage. Chem. Mater., 2016, 28 (11), pp 3897–3904 DOI: 10.1021/acs.chemmater.6b01142
[b]  http://iupac.org/iupac-is-naming-the-four-new-elements-nihonium-moscovium-tennessine-and-oganesson/
[c] B. Zhang et.al. Stabilizing a Platinum1 Single-Atom Catalyst on Supported Phosphomolybdic Acid without Compromising Hydrogenation Activity, Angew. Chem. Int Ed. Volume 55, Issue 29
July 11, 2016 Pages 8319–8323


czwartek, 16 czerwca 2016

Wczoraj w laboratorium (52.)

Wczoraj w laboratorium zająłem się destylacją tiofosgenu - strasznie śmierdzącego i trującego odczynnika.
Tiofosgen to formalnie rzecz biorąc podwójnie zchlorowana grupa tiokarbonylowa. Jego tlenowy analog fosgen był kiedyś używany jako bojowy gaz duszący, co daje już jakieś pojęcie o własnościach.

Zapach nie jest taki zły, jak oczekiwałem sądząc po obecności siarki. Jest ostry, drażniący a przede wszystkim duszący, podobny do innych prostych chlorków kwasowych.

Po co mi on? Do syntezy tiokarbonylodiimidazolu, a ten z kolei jest mi potrzebny do dalszych syntez. Po przeliczeniu wyszło mi, że taniej będzie otrzymać TCDI z tiofosgenu niż zamawiać gotowy. O ile uda się go w końcu zrobić bo już trzy razy próbowałem i powstawały różne dziwne produkty.