informacje



wtorek, 31 grudnia 2013

Kolory ognia - czyli chemia fajerwerków

Być może obserwując fajerwerki strzelające podczas poprzednich Sylwestrów bądź nawet teraz już wypróbowywane przez co niektórych niecierpliwców, mogliście się zastanowić jak to się właściwie dzieje, że iskry płomieni mogą być zafarbowane na jakiś określony kolor. A no, proszę państwa, to już sama chemia działa.


Fajerwerki jako pierwsi wymyślili Chińczycy, niedługo po odkryciu prochu, bo już w VII wieku naszej ery, początkowo w formie zabawki - najpopularniejszym typem były rurki z których wysypywały się kaskady iskier. Szybko wynaleziono też rakiety które znalazły zastosowanie w wojnie - długie, drewniane rakiety z rzeźbioną głową smoka płoszyły konie i ludzi. Podczas bitwy z Mongołami zastosowano też lotne strzały z przymocowanymi małymi rakietkami zwiększającymi zasięg strzału.
Do europy proch trafił w Średniowieczu lecz fajerwerki nie osiągnęły tak dużej popularności jak w swej ojczyźnie i aż do XIX wieku nie były powszechnie dostępne. Przez długi czas nie umiano również wpływać na kolor spalania, mogły być żółte lub białe, mniej lub bardziej jasne. Zmieniło się to wraz z odkryciami chemików, iż pierwiastki potrafią zabarwiać ogień.
Jak z pewnością pamiętacie ze szkoły, atomy składają się z jądra i elektronów w przestrzeni wokół nich. Wprawdzie mechanika kwantowa nieco komplikuje utrwalony obraz małych kulek na orbicie większych kulek, ale takie przybliżenie jest w sam raz dobre aby wytłumaczyć zachodzące zjawiska.
Elektrony wokół jąder grupują się w powłoki zawierające ich określoną liczbę, każda oddzielona jedna od drugiej niewielkim odstępem, coraz dalej aż do ostatniej powłoki walencyjnej. W atomie obojętnym rozkład elektronów w powłokach jest taki, że posiadają najniższą możliwą energię. Jest to stan podstawowy. Nieco inaczej jest jeśli nadamy mu energię, na przykład podgrzewając w płomieniu. Energia przerzuci część elektronów na wyższą powłokę, co jest jednak dla atomów stanem nietrwałym. Bardzo szybko elektrony powracają na swoj miejsce, wypromieniowując energię, ale nie jako ciepło lecz jako światło określonej częstotliwości.

Każdy pierwiastek po wzbudzeniu emituje światło innej długości fali w serii linii widmowych. Najintensywniejsza linia widmowa powoduje że cały płomień w którym rozprowadzone są pary tego pierwiastka, świeci określonym kolorem. W podobny sposób na wzbudzenie reagują jony a także całe molekuły
Zatem aby zabarwić fajerwerki, musimy dodać do nich stosunkowo lotną sól metalu, barwiącego płomień na określony kolor.

Masa palna zawiera zatem przede wszystkim utleniacz, a więc różne saletry, chlorany itp, paliwo czyli węgiel, cukier czy inne związki organiczne, czasem siarkę, dodatki kontrolujące prędkość spalania (i zapobiegające przedwczesnej eksplozji) sól metalu barwiącego i zazwyczaj źródło chloru. Chlorki metali są zwykle dosyć lotne, i dają intensywniejsze kolory, częściowo dzięki emisji cząsteczki chlorku, dlatego taki dodatek pomaga w utrzymaniu barwy, zwykle jest to kauczuk chloroprenowy czy PVC, ewentualnie salmiak.


Czerwony
Istnieją dwa pierwiastki nadające się do barwienia płomieni na czerwono, dające różne odcienie. Sole Strontu, lekkiego metalu alkalicznego,  dają kolor intensywny, ciemny. Zwykle stosowany jest w formie chlorku lub węglanu; jako azotan strontu pojawia się w znanych wszystkim ze stadionów czerwonych racach.
Kolor jasnoczerwony nadają ogniowi sole litu, są jednak raczej rzadziej używane, zwykle w mieszankach dla uzyskania intensywnego pomarańczu. Zazwyczaj w formie węglanu lub chlorku.

Żółty
Kolor żółty jest bardzo łatwy do uzyskania, tak bardzo że trzeba uważać aby kompletnie nie zamaskował sobą właściwych kolorów. Czynnikiem jest tutaj sód, wszechobecny w ludzkim otoczeniu jako składnik potu. Zazwyczaj używany jest azotan sodu, który jest mało higroskopijny, przez co fajerwerk nie tak łatwo wilgotnieje; można też użyć zwykłej soli kuchennej lub sody oczyszczonej. Czasem używany jest kriolit, czyli fluoroglinian sodu, mający tą zaletę że jest nierozpuszczalny i zupełnie niehigroskopijny. Intensywne światło sodu zagłusza inne kolory, dlatego pirotechnicy starają się nie zanieczyścić nim swych mas palnych

Pomarańczowy
Pomarańczu przyda iskrom pospolity wapń zwykle w formie siarczanu (gips) lub chlorku, bardziej intensywny kolor otrzymuje się dodając domieszki pierwiastków barwiących żółto i czerwono.

Zielony
Kolor ten pojawia się w oparach kilku pierwiastków, lecz zastosowanie znalazł ostatecznie Bar, w formie węglanu i chlorku. Specyficznym przypadkiem jest azotan baru - z dodatkami chlorującymi daje mało intensywną zieleń, bez nich zachowuje się jak zwykła saletra i bardzo często jest używany po prostu jako utleniacz, na przykład w zimnych ogniach

Niebieski
Na niebiesko rakietę zabarwią sole miedzi, ale aby uzyskać taki efekt temperatura plomienia musi być odpowiednio wysoka, w przeciwnym razie metal da mało wyraźną, jasną zieleń. Najlepszy jest tutaj chlorek miedzi I, mogą być też użyte węglany a nawet tlenki z dodatkami chlorującymi. Intensywny odcień daje też zieleń paryska, czyli arsenian-octan miedzi, toksyczny związek.

Indygo
Szczególnie ciemny odcień niebieskiego, określany jako Indygo, dają sole cezu, silnie alkalicznego, rzadkiego metalu. Używany jest tutaj właściwie tylko azotan cezu. Fajerwerki takie muszą ciekawie wyglądać w podczerwieni, metal bowiem emituje bardzo intensywną linię widmową właśnie w tym zakresie, czego niestety gołe oko nie zobaczy.

Fiolet
Odcienie fioletu i różu nada fajerwerkom potas, ale w nieobecności sodu. Dość intensywny kolor można uzyskać stosując azotan rubidu, jest to jednak rzadkie zastosowanie. Najczęściej jednak używa się mieszanki czerwonych związków strontu i niebieskich związków miedzi.

Ferdinand du Puigaudeau, Fajerwerki w porcie
Pierwiastki te niekoniecznie nadają się do zabarwiania innych typów płomieni - płomień węglowodorowy świeci głównie dzięki rozżarzonym cząstkom węgla, których blask może zagłuszać efekt emisyjny. Sprawdzałem że w przypadku świecy sól miedzi powoduje, że zielonkawe zabarwienie widoczne jest właściwie tylko w zewnętrznym płaszczu płomienia i końcówce, podobne efekty można zaobserwować w ognisku, po wrzuceniu kolorowych, zadrukowanych pism, gdzie związki miedzi i baru (użytego jako baryt w charakterze wypełniacza masy papierowej) podbarwiają zielonkawo same szczyty ogników.
Efekt możne być jednak wyraźny w przypadku płomieni alkoholi i niektórych paliw, dających ogień raczej niebieski z żółtą końcówką niż cały żółty. Dobrym sposobem zabarwienia płomienia alkoholu jest dodanie do niego kwasu bornego i lekkie ogrzanie, można też dodać do tej mieszanki nieco kwasu siarkowego. W takich warunkach tworzą się estry borowe, dosyć lotne i chętnie tworzące ciemnozielony płomień. W przypadku innych metali podejrzewam, że efekt mogłoby dać nasycenie chlorkiem metalu samego knota, jako że sole są mało rozpuszczalne w alkoholu. Możliwe jest więc zrobienie lampek spirytusowych w różnych kolorach.
Zastanawiam się czy możliwe by było zmieszanie oddestylowanego estru borowego z samym woskiem i zrobienie świecy, ale podejrzewam że efekt byłby jednak słaby

Użyte pierwiastki po spaleniu się zostają uwolnione do atmosfery w formie lotnych popiołów. Niestety często używany w fajerwerkach bar jest pierwiastkiem trującym, zwłaszcza dla ryb. Iluminacje sylwestrowe są jednym z największych źródeł baru w powietrzu, na szczęście jednorazowym. Używając zimnych ogni zwróćcie uwagę na etykiety gdzie radzi się po użyciu umyć ręce - to właśnie z powodu azotanu baru stosowanego jako utleniacz.
Związkiem trującym dla ryb jest też często używany nadchloran, który u ludzi jest związkiem wolotwórczym. Z tego też powodu poszukuje się bardziej ekologicznych formuł. Dosyć ciekawym pomysłem jest zastosowanie kompleksów tetrazoli z metalami, które zawierając śladowe ilości metali intensywnie świecą przy silnym ogrzaniu, zanim całkiem się spalą. Natomiast nadchlorany można zastępować nie trującymi nadjodanami, dającymi dodatkowo żółty kolor spalania.

czwartek, 26 grudnia 2013

Świąteczna rocznica i obrazek

Zastanawiałem się nad tym jaki tu na święta dać wpis. Początkowo myślałem o chemicznym rozbiorze dań świątecznych, ale poza ciekawymi właściwościami buraków nie mogłem znaleźć nic interesującego. Potem przypomniałem sobie o pewnym zabawnym obrazku który idealnie pasował do tego dnia, ale robić wpis dla  jednego obrazka? To może jakaś rocznica, może akurat coś wpadnie.
Zajrzałem więc na świetną stronę On This Day in Chemistry, aby zobaczyć czy na Boże Narodzenie przypada rocznica czegoś ciekawego w chemii i od razu wiedziałem, że pomyślany pierwotnie śmieszny obrazek, pasuje do tego wpisu idealnie.

26 grudnia roku 1898 francuski chemik Pierre Curie i jego żona, chemiczka Maria Curie-Skłodowska, ogłosili odkrycie nowego pierwiastka - Radu - rozpoczynając nową erę chemii i fizyki. Ich małżeństwo i odkrycia są znane, nawet w pewnym stopniu zmitologizowane z bardzo silnym przesunięciem punktu ciężkości na Marię - w efekcie mało kto wie że Piotr też dokonał paru ciekawych odkryć, które zresztą silnie wiązały się z tym najsłynniejszym, dlatego w swej historycznej dygresji poprowadzę wątek od nietypowej strony.

Minerał Turmalin znany był już od średniowiecza ze swej niezwykle zmiennej kolorystyki, zmieniającej się często także w obrębie jednej bryły, toteż chętnie wykonywano z niego drobne ozdoby, nie ceniąc go jednak szczególnie. Jedną z ciekawych cech jaka sprzykrzała się właścicielom kamienia, było to że bardzo chętnie kurzył się, a po podgrzaniu przyciągał pył i skrawki tkaniny podobnie jak bursztyn. Zjawisko to pojawiało się po zmianie temperatury kamienia. Dopiero w XIX wieku wykazano, że ogrzewany kryształ elektryzuje się, wytwarzając na dwóch końcach silne ładunki przeciwnego znaku. Zjawisko to nazwano piroelektrycznością.
Efektem tym zainteresował się francuski krystalograf i fizyk Jaques Curie, który wciągnął w badania młodszego brata, też fizyka, Piotra. Wykazali oni że powstawanie ładunku ma pewien związek z rozszerzalnością cieplną kryształów turmalinu - kryształ podczas ogrzewania rozszerza się, ale nie we wszystkich kierunkach lecz bardziej wzdłuż. Powoduje to zaburzenie symetrii jonów w sieci krystalicznej, przez punkt ciężkości jonów dodatnich przestaje się pokrywać z punktem ciężkości jonów ujemnych. To zaburzenie symetrii polaryzuje kryształ. Jak też wykazali, istnieje efekt odwrotny - odkształcenie kryształu w polu elektrycznym.
Bracia oczywiście zastanowili się, czy podobny efekt można wywołać mechanicznie, i rzeczywiście, ściskany kryształ także elektryzował się po dwóch stronach. Ponieważ jednak istniała grupa kryształów elektryzujących się po ściśnięciu ale nie po ogrzaniu, stwierdzili że musi być to osobne zjawisko, nazwane przez nich piezoelektrycznością.
Aby móc dokładnie badać oba zjawiska zbudowali bardzo czuły elektrometr piezoelektryczny, pozwalający precyzyjnie i ilościowo mierzyć zmiany elektryzacji.

Piotr Curie zajął się w późniejszej pracy tajnikami magnetyzmu. Badając powiązanie między namagnesowaniem ciała a jego temperaturą, odkrył prostą zależność, nazwaną potem Prawem Curie, stwierdzającą że namagnesowanie paramagnetyka spada wraz ze wzrostem temperatury. We wzorze określającym prawo znaleźć musiał się specyficzny dla danego ciała współczynnik, nazwany potem stałą Curie. Temperatura w której namagnesowanie spada do zera i magnes przestaje być magnesem, została dla konsekwencji nazwana temperaturą Curie.
Tak więc wkład w naukę miał Piotr już ogromny i właśnie kończył doktorat, gdy znajomy przedstawił mu inteligentną i urodziwą Marię Salomeę Skłodowską, emigrantkę o wielkiej pasji do nauki. Zajmowała się w tym czasie badaniami nad własnościami magnetycznymi stali, ale narzekała na brak miejsca. Laboratorium Piotra było duże i dobrze wyposażone, z nim samym natomiast dało się dogadać. I tak Maria prowadziła swoje badania, Piotr swoje i z czasem zawiązało się pomiędzy nimi coś więcej niż tylko nić porozumienia.
Wreszcie gdy Piotr obronił doktorat i otrzymał profesurę, młodzi badacze ożenili się.

Piotr namawiał żonę na kontynuację pracy naukowej, na rozpoczęcie pracy doktorskiej. Musiała tylko znaleźć sobie jakiś ciekawy temat. Od czasu odkrycia promieni X na topie były podobne badania, dlatego mało opracowanie doniesienie Becquerela wydawało się doskonałym tematem.

Henri Becquerel zajmował się badaniem fluorescencji, to jest zjawiskiem świecenia się pewnych materiałów podczas naświetlenia światłem innego koloru. Gdy usłyszał o promieniach Roentgena zaczął zastanawiać się, czy promieni tych nie wydzielają oprócz światła także substancje fluoryzujące. Wziął kilka znanych mu minerałów fosforyzujących, kładł na kliszę fotograficzną obłożoną szczelnie grubym papierem i wystawiał na słońce. Pod wpływem słońca minerał powinien fluoryzować i jeśli wydzieli przy tym przenikliwe promienie X, to klisza mimo nieprzepuszczalnego dla światła papieru powinna się prześwietlić w miejscu położenia próbki.
Tak też działo się w przypadku pewnych soli uranu.
Niestety przypadek sprawił, że tak pięknie się rysująca koncepcja została podważona. Z powodu pochmurnej pogody odłożył do szuflady próbkę soli i kliszę. Po kilku dniach postanowił mimo wszystko spróbować naświetlania w chwilach gdy słońce przebijało się przez chmury, spodziewając się bardzo słabych obrazów. Tymczasem klisza została zaczerniona bardzo silnie, ale nie tam gdzie położył próbkę wystawiając na słońcu - lecz tam gdzie leżała ona na kliszy w szufladzie.
Początkowo myślał że wcześniej naświetlona próbka cały czas fosforyzowała w szufladzie, ale gdy porównał wyniki z solami uranu które nie fluoryzowały, musiał stwierdzić że promienie wydziela sam pierwiastek, bez konieczności uprzedniej obróbki. Najwyraźniej do wytworzenia niewidzialnych promieni nie potrzebna była lampa próżniowa.

Maria wzięła ten temat na warsztat i próbując zbadać wpływ tajemniczych promieni na materię, stwierdziła że wywołują one elektryzację. A ponieważ w laboratorium męża stał niezwykle precyzyjny przyrząd do badania tejże, szybko wykazała, że zdolność do jonizacji zależy od stężenia uranu w próbce. Mniej uranu, mniejsza jonizacja; więcej uranu, większa jonizacja. Aby potwierdzić teorię badała zależność dla różnych soli i minerałów i tu wykryła anomalię.
Zdolność do jonizacji blendy uranowej, była kilkakrotnie większa niż by to wynikało z ilości uranu. Posunęła się nawet do tego, ze zsyntetyzowała sztuczną postać minerału o takiej samej zawartości uranu jaj w naturalnym - i nadal promieniowanie minerału było większe.
Myśl, że w minerale ukrył się jakiś pierwiastek o silniejszej zdolności jonizującej była prosta ale w swej prostocie genialna. Oboje małżonkowie - bo Piotr też zaineresował się tematem - w optymistycznej naiwności sądzili ze pierwiastka musi być w minerale dużo, toteż rozkruszyli kilka bryłek i rozpuścili w kwasie, po czym zaczeli rozdzielać mieszaninę na składniki.
Oddzielili uran i w pozostałości stwierdzili silną aktywność frakcji zawierającej bizmut. Ponieważ sam bizmut nie był aktywny, poszukiwany pierwiastek misiał mieć podobne do niego właściwości. Zgłoszenie odkrycia zostało opublikowane w lipcu 1898 roku.
Jednak gdy badali pozostałości po wydzieleniu polonu, stwierdzili że jedna z frakcji także wykazuje dużą aktywność. Nie był to Polon, zatem w mieszaninie musiał kryć się kolejny pierwiastek. Badania spektroskopowe frakcji o właściwości Baru wykazały pojawienie się karminowej linii emisyjnej, której nie obserwowano u znanych pierwiastków. 26 grudnia małżonkowie zgłosili odkrycie nowego pierwiastka - nazwano go Radem.

Tak więc na odkrycie złożyło się kilka rozmaitych czynników.

A obrazek? Oto on:
Prawda że pasuje?

sobota, 14 grudnia 2013

Zapalniczka i zimne ognie

Na sylwestra, na święta, dla zabawy. W noc ciemną bierzemy do ręki pałeczki zimnych ogni i zapalamy, na przykład zapalniczką. Ale nie zawsze zauważamy że zapalenie zapalniczki i zapalenie zimnych ogni, ma ze sobą coś wspólnego.

To co popularnie nazywamy zimnymi ogniami, to pałeczki z cienkiego drucika pokrytego masą pirotechniczną. Podstawowy skład jest dosyć prosty - utleniacz, opiłki metalu i lepiszcze. Dokładne składniki zależą już od producenta, zwykle w charakterze utleniacza stosuje się saletrę potasową lub azotan baru albo też chloran potasu, zaś metalem są drobne opiłki żelaza z domieszką magnezu lub glinu, natomiast za lepiszcze służy klej dekstrynowy. Dlaczego zatem po zapaleniu takiej mieszanki, zaczynają strzelać z niej jasne iskry?

Mieszanka użyta w zimnych ogniach jest bardzo podobna do prochu, i działanie jest w pewnym stopniu podobne. W wysokiej temperaturze, utleniacz rozkłada się, przekazując tlen cząstce metalu. Ten utlenia się i rozgrzewa aż do temperatury białego żaru, zaś cząstki na zewnętrznej powierzchni są wyrzucane gazami z rozkładu utleniacza i spalenia lepiszcza. Iskra taka trwa dosyć krótko, zwykle gasnąc i stygnąc po przeleceniu kilkunastu centymetrów, stąd drobne iskierki zwykle nie wywołują oparzeń ręki, i dlatego też otrzymały taką popularną nazwę. Z drugiej strony wyraźne czerwone świecenie pręcika powinno nam uświadomić, że fajerwerk ten jest jednak bardzo gorący, upuszczony na dywan lub ubranie może wypalić w nim dziurę.
Inną sytuacją gdy obserwujemy iskrzenie drobnych cząstek metalu, jest cięcie bądź szlifowanie metalu za pomocną szybko obrotowych narzędzi. Powstające wówczas snopy iskier, to właśnie rozżarzone opiłki utleniające się na powietrzu. Zachowanie się metalu podczas obróbki jest w dużym stopniu zależne od składu, jedną z technik prostego określenia z jakiego typu stopem mamy do czynienia, jest metoda iskrowa, polegająca na skrzesaniu iskier szlifierką. Stal niskowęglowa, miękka, daje iskry krótkie i nie rozgałęziające się, stal twarda o wysokiej zawartości węgla daje iskry pękające w powietrzu na snopy drobniejszych iskierek, stopy tytanu dają białe, oślepiająco jasne iskry.

Dlaczego jednak, skoro brak tu jak w przypadku zimnych ogni utleniacza, opiłki metalu iskrzą przy takiej obróbce? Energii dostarcza głównie ciepło tarcia, wystarczające aby metal zaczął się żarzyć, ponadto zaś jeśli drobina metalu jest odpowiednio mała, może zapalić się w powietrzu samoistnie wskutek powierzchniowego utleniania. Substancje samorzutnie zapalające się na powietrzu, nazywamy piroforycznymi, i są to głównie metale aktywne, dla których termodynamicznie trwała jest forma utleniona i które nie ulegają pasywacji. Efekt taki może dać na przykład pył magnezu lub tytanu, ale stosunkowo znanym przykładem jest piroforyczne żelazo:

Można je dość łatwo otrzymać, przez termiczny rozkład szczawianu żelaza w wąskiej próbówce. Powstający przy rozkładzie dwutlenek węgla wypiera powietrze i zapalenie się następuje dopiero po wytrząśnięciu pyłu. Wiele pyłów metali zapala się po zainicjowaniu iskrą, co może przybrać formę eksplozji tak jak wybuch pyłu węglowego. Tragicznym tego przykładem była eksplozja pyłu aluminium w Gorzowskich zakładach Italian Look w 2001 roku, gdy na hali szlifowania części ekspresów do kawy silny wybuch poparzył pracowników - pięciu zmarło.[1] Wśród winnych znalazła się też zakładowa instruktorka BHP które tłumaczyła w sądzie, że nie wiedziała, że pył metalu może wybuchnąć.

Wróćmy jednak do iskier krzesanych przez metal. Powstawanie takich gorących cząstek w wyniku uderzenia o metal twardym przedmiotem, miało w minionych wiekach bardzo pożyteczne zastosowanie w krzesiwkach do krzesania ognia.

Krzesiwo było kawałkiem twardego żelaza, zazwyczaj o wygiętym kształcie, który energicznie uderzano w kamień, zazwyczaj krzemień. Powstające iskry odskakiwały w kierunku krzesania, spadając na hubkę, która będąc łatwopalna chętnie zajmowała się od rozżarzonych okruchów. Jeśli dmuchając udało się rozdmuchać hubkę do pojawienia się ognia, można było dokładać listki, słonki, gałązki itp. aż do ogniska. Hubka będąca rozpałką, stanowiła gąbczasty, częściowo zdrewniały miąższ grzybów nadrzewnych, zwłaszcza hubiaka pospolitego (o starożytności metody świadczy jego nazwa łacińska Fomes fomentarius znacząca dosłownie zapałka zapalająca), nasycony saletrą i rozdrobniony; czasem w zastępstwie używano częściowo zwęglonych strzępków tkaniny lub roślin. Zamiast żelaza użyty mógł być zbity piryt, którego cząstki spalają się w powietrzu, skąd zresztą wziął swą nazwę (pyrites czyli iskrzący).
Sposób ten znany od starożytności, stosowany był aż do XIX stulecia gdy zaczęto stopniowo wprowadzać zapałki, choć zapewne gdzieniegdzie używano go u początków minionego wieku. Tą prostą metodę krzesania udało się zautomatyzować, tworząc mechanizm skałkowy, który już w XVII wieku zastosowano w muszkietach i pistoletach, to zaś zmieniło oblicze wojny i obronności. Mechanizm składał się z dwóch podstawowych części - kurka, w którego szczękach tkwił kawałek krzemienia, oraz krzesiwka, mającego postać blaszki w kształcie litery L na małym zawiasie. Naciśnięcie spustu uwalniało kurek, który napinany sprężyną uderzał w sterczącą blaszkę krzesiwa. To odskakiwało, przez pewien czas intensywnie trąc o krzemień i krzesząc iskry snopiące na odsłoniętą panewkę z prochem.
I choć nikt tego wówczas nie wiedział, mechanizm był pierwowzorem dla zapalniczki, bardzo w późniejszym czasie przydatnego urządzenia.

Pierwsze próby zapalania takim mechanizmem czegoś więcej niż prochu, pojawiały się już dawno - po prostu kładziono na panewkę kawałek hubki. Pomysł jednak najwyraźniej nie był rozwojowy, skoro przenośne konstrukcje bardziej przypominające zapalniczki pojawiają się dopiero w XIX wieku, gdy chemik Dobereiner wynajduje chemiczną zapalarkę - był to mały aparat Kippa, w którym cynk reagował z kwasem siarkowym. Powstający wodór kierowano dyszą na gąbczastą platynę, na tyle silnie katalizującą utlenianie wororu, że zapalał się on niedużym płomieniem. Była to konstrukcja kłopotliwa z uwagi na rozmiary i niebezpieczny kwas.
W połowie tegoż wieku pojawiły się mechanizmy oparte na stalowym kole ciernym krzeszącym iskry na knot nasączony alkoholem, były to jednak urządzenia zawodne z uwagi na wcale nie tak łatwe skrzesanie iskry. Przełom nastąpił dopiero w 1903 roku, gdy Auer von Welsbach, trochę dziś zapomniany wynalazca kilku urządzeń oświetleniowych* odkrył szczególne, piroforyczne właściwości żelazoceru - stopu żelaza z mieszaniną lantanowców otrzymywanych z piasku monacytowego. Był to materiał na tyle łatwo dający dobrze zapalające iskry, że wyposażone w niego zapalniczki stały się poważnym konkurentem zapałek.

Współczesne zapalniczki iskrowe zawierając mechanizm cierny, w którym kamień zapalniczkowy (pręcik żelazoceru lub masa krzemianowa z pyłem żelaza) przyciskany sprężynką do karbowanej powierzchni stalowego kołka, krzesze iskry po szybkim obróceniu tymże kółkiem. Te zapalają gaz uwalniany przez zaworek po przyciśnięciu stopki, bądź opary benzyny w zapalniczkach z knotem nazywanych Zippo.
Lantanowce, nazywane metalami ziem rzadkich, są pierwiastkami mającymi bardzo szerokie zastosowanie w technologii, w tym w fotowoltaice, z tego też powodu są drogie. Jednak stop używany w zapalniczkach jest dosyć tani - na koszt czystego pierwiastka składa się głównie koszt oczyszczania, które ze względu na to, że lantanowce występują na raz w tym samym minerale i mają niezwykle podobne właściwości chemiczne jest dość trudne.
Obecnie coraz częściej ten typ wypierany jest przez zapalniczki piezoelektryczne, gdzie czynnikiem zapalającym jest iskra elektryczna wytworzona przez pewne ściskane kryształy.

No i na koniec mała ciekawostka która zainspirowała ten wpis - nie wszystkie cząstki kamienia zapalniczkowego spalają się przy iskrzeniu - małe cząstki pozostają i mogą zapalić się w sprzyjających okolicznościach, na przykład w gorącym powietrzu nad palnikiem kuchenki gazowej, co wielokrotnie obserwowałem.

--------
* Auer wymyślił na przykład "koszulki żarowe" do lamp gazowych, czyli bawełniane nasadki na końcówkę dyszy spalającej gaz. Po wypaleniu bawełny pozostaje szkielet soli toru i ceru, którymi była nasączona, żarzący się w płomieniu jasnym, białym światłem. To on wpadł też na pomysł że w żarówkach Edisona lepszym żarnikiem niż węgiel będzie cienki drucik wysokotopliwego metalu. Poza tym odkrył kilka pierwiastków.
[1] http://www.polskieradio.pl/5/3/Artykul/591234,Wybuch-w-fabryce-w-Gorzowie-Wlkp-Pracownik-aresztowany

środa, 11 grudnia 2013

Kto czuje chemię?

Szukający w internecie ciekawych stron na temat chemii, nie będą chyba za bardzo usatysfakcjonowani, gdyż poza stronami o korepetycjach, z materiałami dla uczniów i stron poszczególnych uczelni, nie znajdą zbyt wiele. Jest jednak strona, która się wyróżnia - profesjonalnie zaprojektowana, często aktualizowana i polecana przez wiele portali. Jeśli jednak przyjrzeć się jej z bliska, to nie wygląda ona tak dobrze...

Poczuj Chemię
Ładnie zaprojektowana strona popularyzatorska PKN Orlen, prezentująca podstawowe informacje na temat pierwiastków, propozycje doświadczeń oraz artykuły w formie bloga. Strona jest ładna, zupełnie jasna i zapewne wywołująca zaciekawienie, ale pierwszym co zwraca uwagę, to iż pomimo dwóch lat działania jest tam zaskakująco mało treści.
Oczywiście rozumiem. Wiem że strona jest robiona z myślą o gimnazjalistach - pytanie tylko jak twórcy wyobrażali sobie ten target, skoro z kilkudziesięciu artykułów na "blogu" można się dowiedzieć tyle co z podręcznika i nic nadto? Wiem, że niektórzy narzekają, że moje artykuły są za długie, ale czy satysfakcjonującym źródłem wiedzy jest taki oto artykuł? :
Jod(I) Pierwiastek VII grupy, piątego okresu bloku p układu okresowego należący do fluorowców. Jego masa atomowa wynosi 126,90 u, występuje w postaci stałej i ma piękny szaroczarny kolor. Cechą charakterystyczną dla tego pierwiastka jest zjawisko sublimacji, czyli możliwości bezpośredniej zmiany stanu skupienia ze stanu stałego w gazowy, w temperaturze zaledwie pokojowej.
Jod występuje wówczas w postaci fioletowych oparów o drażniącym zapachu. Jod po resublimacji, czyli ponownym zestaleniu używa się w weterynarii do dezynfekcji. Znany jest tez kilkuprocentowy roztwór jodu w alkoholu o nazwie jodyna, który również służył, jako środek odkażający. Odpowiednia ilość jodu w organizmie pomaga nam w utrzymaniu sprawności naszej tarczycy, stąd tez nasza sól spożywcza jest jodowana a lekarze często zalecają by wakacyjny pobyt zorganizować nad morzem. Ma to swoje wytłumaczenie, a mianowicie największe ilości jodu występują w wodzie morskiej.


Większość wpisów ma podobny rozmiar. Jeśli chodzi o jakość, to użytkownik Admin zdecydowanie nie popisał się swą wiedzą.
W notatce o karmelu pisze, że karmel to cukier który się stopił a stopiony cukier jest brązową cieczą ciemniejącą w miarę utraty wody, oraz że masa zastyga w formie amorficznej. Najwyraźniej autor nie wie, że w rzeczywistości stopiony cukier jest przezroczystą cieczą (po zastygnięciu tworzy masę podobną do szkła, z której między innymi wykonuje się bezpieczne szybki i butelki do rozbijania na głowach aktorów podczas kręcenia filmów), zaś efekt ciemnienia i nabierania specyficznego aromatu, to wynik skomplikowanych przemian chemicznych określanych ogólnie mianem karmelizacji, obejmujących dekarboksylacje, dehydratacje i inne reakcje, w związku z czym masa karmelowa to nie jest tylko stopiony cukier.
Kolejna wpadka to artykuł o tym dlaczego mocniej opalamy się kąpiąc - zdaniem Admina to wynik drobnych kropelek wody na skórze, które działają jak soczewki skupiające światło. Nie trzeba mieć wielkiego rozeznania aby domyśleć się, że wobec tego taka opalenizna miałaby postać opalonych punkcików tam gdzie znalazły się kropelki a nie regularnego przyciemnienia płaszczyzny. W rzeczywistości przyczyny są dwie - kąpiąc się długo przebywamy na słońcu, zaś na naszą skórę oprócz promieni ze słońca, padają też te odbite od powierzchni wody. A teraz przedstawię wam najczęściej komentowany artykuł na tej stronie:
Zastanowiły was może często używane połączenia wyrazów, takie jak: quasi-nauka, quasi-opiekun, quasi-umysłowy itp.? Połączenie członu „quasi-„ ze znanym i powszechnie używanym wyrazem sprawia, że znaczenie tego wyrazu odczytujemy połowicznie lub częściowo. Czy zatem quasi-kibic, to tzw. kibic „od święta” kibicujący przed telewizorem? A quasi-chemik, to polonista opisujący doświadczenia chemiczne? Jeśli chodzi o pojęcia chemiczne, to sprawa jest prosta. Quasi-cząsteczka, to cząsteczka posiadająca tylko część ładunku elektronu, a guasi-kryształy – to forma ciała stałego choć regularna, to nie powtarzająca się. Za odkrycie quasi-kryształów Daniel Shechtman w zeszłym roku (2011) otrzymał nagrodę Nobla z chemii. Jego odkrycie nie spotkało się początkowo ze zrozumieniem. Za swoje odkrycie nazwany nawet został w przeszłości quasi-naukowcem. Obecnie wiadomo, że quasi – kryształy dzięki temu, że nie do końca są kryształami wykazują cechy umożliwiające ich szerokie zastosowanie

Autor najwyraźniej nie orientuje się, że "quasi" to przedrostek znaczący tyle co "niby", "rzekomo" a nie "połowicznie". Nie lepiej jest z jego wiedzą o chemii - kwazicząstka to teoretyczny obiekt będący sposobem opisu pewnych zjawisk. Przykładowo półprzewodnictwo dziurowe, a więc w sieci krystalicznej z niedomiarem elektronów, opisuje się za pomocą pojęcia dziury elektronowej, opisywanej dokładnie tak, jakby była cząstką o dodatnim ładunku. Pewne typy drgań sieci krystalicznych opisuje się jako przemieszczanie się nieistniejących fononów. Nie ma to żadnego związku z posiadaniem "części ładunku elektronu" cokolwiek miałoby to znaczyć. Tylko akapit o kwazikryształach jest prawdziwy ale poza faktem ich istnienia nie dowiadujemy się o nich niczego. Niestety im dalej w las, tym więcej pulpy.
Artykuł "Wystarczy zważyć?" zaczyna od rozsądnego stwierdzenia, że o obiektach bardzo małych, rzędu mikrometrów, trudno jest bez niszczących badań chemicznych powiedzieć coś konkretnego. Potem zwiększa skalę i zauważa że nawet gdy obiekt jest tak duży jak złoty posążek, trudno ocenić jego prawdziwy skład, bo może to być pozłacany ołów. Po czym jako test proponuje próbę Archimedesa - porównanie objętości wody wypartej przez posążek z objętością wody wypartej przez złoto tej samej masy. Nie tłumaczy przy tym że chodzi tu w istocie o pomiar gęstości, ani nie wyjaśnia co to ma wspólnego z tymi bardzo drobnymi obiektami, o których nie da się nic powiedzieć? I co w tym takiego chemicznego?

Nie lepiej w pozostałych działach gdzie znaleźć się powinny obszerniejsze artykuły. Weźmy obiecujący artykuł "Polscy chemicy - zapomniane historie" mający objaśniać sylwetki polskich chemików którzy wnieśli coś w naukę a dziś są już zapomniani. No dobrze, czytajmy. Jako pierwsza wśród "zapomnianych chemików" wymienione jest oczywiście Skłodowska, o której chyba każdy słyszał. Potem wspomina się o Mościckim, następnie po dwa zdania o Olszewskim i Wróblewskim a na koniec Łukasiewicz. Przeciętny uczeń znajdzie tych "chemików których nikt nie pamięta" we własnym podręczniku do chemii, toteż początkowa obietnica nie zostaje spełniona. A Mąkosza? A Achmatowicz? A Jabłoński? A Czochralski? - o nich widocznie gimnazjalista nie musi pamiętać.

A części interaktywne? Dosyć ciekawą opcją są "doświadczenia on line" czyli animacje w których poruszając myszką wykonuje się kolejne kroki doświadczenia, na końcu otrzymując wynik z objaśnieniem. Pytanie tylko dlaczego w doświadczeniu o utleniających właściwościach dichromianów, dostaję efekt i objaśnienie z doświadczenia o nadmanganianie?
Jeśli dodać do tego składnię niektórych zdań, przywodzącą uczniów podstawówki np. "Co nas chroni przed komarów ukąszeniami?" można zastanowić się jaki właściwie był cel autorów. Co zaskakujące, istnieje jeszcze czeska wersja portalu. Tam za treść odpowiada doktor Ctibor Škuta, którego teksty są obszerniejsze i omawiając poszczególne przedmioty (na przykład skład szminki albo materiały z których produkuje się pociski do Paintballa) unika zarzucania czytelnika liczbowymi danymi.

A co mógłbym zaproponować w zamian? Niestety nie ma tu zbyt wiele do polecenia:
- Świat Chemii - dość dobry portal o chemii w ogólności, niektóre artykuły wyczerpujące i dobrze napisane, niestety właściwie od września zeszłego roku nie pojawiło się tu nic nowego. Ostatnio próbuje się modernizować stronę, więc może się rozwinie.
- chemia.waw.pl - portal edukacyjny, krótkie, raczej encyklopedyczne artykuły. Nie aktualizowany od 2008 roku.
- Vortal Młodego Chemika - portal skoncentrowany głównie na pirotechnice amatorskiej, baza danych w tym książki do ściągnięcia, ale mniej więcej od 2012 roku nie pojawia się tu nic nowego (z wyjątkiem jednego artykułu z lutego). Obecnie aktywność skupia się na forum i internetowym sklepie.

Jest też kilka blogów:
- New Chemistry - blog poświęcony retrosyntezie i nowoczesnych technikom syntetycznym, wprawdzie od maja nie ma nowych wpisów, ale nadal godny polecenia
- Laboratorium Davidoffskiego - dobry blog o różnych tematach
- Chemiczny świat - dobry blog o chemicznych ciekawostkach
- Sama Chemia - najnowszy przybytek, założona w maju strona z wpisami w formie bloga, głownie o chemii fizycznej i teoretycznej z myślą o uczniach
- Piękna Chemia - dobrze się zapowiadający blog, niestety działał tylko przez marzec tego roku.

niedziela, 8 grudnia 2013

Chemik na miejscu zbrodni - wykrywanie odcisków palców

Ilekroć przewracając kartki książki mamy problem z rozdzieleniem stron i ilekroć chwytamy ciężkie przedmioty, starając się ich nie upuścić, zwracamy uwagę na to co poza samą siłą uścisku daje nam dobry chwyt - szorstkość skóry. Skóra zasadniczo jest z zewnątrz gładka i śliska, zwłaszcza gdy jest wilgotna, tymczasem wilgotne palce zazwyczaj zachowują dużą szorstkość, za sprawą drobnych listewek na powierzchni skóry, nazywanych liniami papilarnymi. Ewolucyjne mechanizmy postarały się aby nasze palce były wystarczająco chwytne właśnie dzięki tym nierównościom, zarazem jednak nie miało znaczenia w jaki sposób będą rozłożone na skórze, byle ich przebieg utrudniał ześlizgiwanie się zarówno wzdłuż jak i w poprzek opuszki palca. Dlatego kształt i przebieg linii nie jest specjalnie regulowany, zależąc zapewne od mnóstwa przypadkowych czynników związanych z rozrostem stopniowo rozciąganej skóry w okresie rozwoju embrionalnego. Ponieważ zaś możliwości fałdowania jest przeogromna liczba a ostateczny wzór może zależeć na przykład od ruchów embrionu, rozwój linii przypomina rozwój płatków śniegu - i podobnie jak one pomimo powtarzalnego ogólnego schematu, układ linii jest dla każdego człowieka inny, wyjątkowy. Wydaje się zaskakujące że dopiero tak późno, bo aż w XIX wieku ktoś wpadł na pomysł, że skoro te układy są tak różnorodne, to można by po nich zidentyfikować człowieka. Także takiego który popełniwszy przestępstwo, odbił swe unikalne układy na miejscu zbrodni.
Już w starożytności odciśnięcie palca bądź ręki na glinianej tabliczce mogło być uznane za sposób poświadczenia własności czy swoistego podpisania się przez nie znającego pisma, chińskie opowieści o mądrych sędziach rozwiązujących sprawy kryminalne czasem wspominały o identyfikacji za pomocą porównania dłoni z jej odciskiem, ale  wydaje się że była to raczej identyfikacja antropomorficzna (długość poszczególnych palców, szerokość dłoni itp) aniżeli daktyloskopowa. Próby opisu ich wyglądu i rodzajów podjęto w XVII wieku, jednak trzeba było trafu aby ktoś zajął się tym tematem poważnie i pod kątem kryminalistyki.

Historia
Szkocki chirurg dr Henry Faulds był ciekawą postacią. W ramach misji prezbiterianów w latach 70. XIX wieku udał się do Japonii gdzie wywarł duży wpływ na rozwój nowoczesnej chirurgii w tym kraju. Zakładał szpitale w których stosował antyseptyczny reżim Listera, zapobiegający zakażeniom. Założył pierwszy na wyspach zakład opiekujący się niewidomymi, propagował higienę i przyczynił się do zakończenia kilku epidemii. Napisał dwie książki podróżnicze a jego szpital w Tokio był uważany za najlepsza azjatycką placówkę zdrowotną.
W trakcie tych wszystkich zajęć miał jednak czas aby zajmować się różnymi drobnostkami. Na przykład pomagał w wykopaliskach przyjacielowi, Edwardowi Morse'owi, który przekopując starożytne kopce i ruiny segregował odnalezioną ceramikę, starając się określić osobne okresy kulturowe. Gdy przeglądali szczątki rozbitych waz, talerzy, dzbanów i drobnych przedmiotów, zwrócili też uwagę na odciśnięte ślady palców starożytnych rzemieślników, którzy kształtowali miękki materiał a po których po tysiącach lat jako jedyny ślad pozostał odcisk delikatnych linii. Faulds zaczął się wówczas przyglądać własnym palcom, i porównywał ich wygląd z palcami innych ludzi. Stwierdził, że w szczegółach różnią się one od siebie na tyle dobrze, że po samych śladach dałoby się, jak sądził, stwierdzić kto je zostawił. I być może uwaga ta skończyłaby się najwyżej drobnym artykułem czy też jakąś wzmianką w kolejnej książce o swej praktyce lekarskiej, gdyby nie sprawa która wręcz zmusiła go do działania.
Oto doktor stwierdził, że ktoś podkrada mu alkohol z szafki. Sprawca pozostawił na butelce wyraźne, tłuste odciski. Ponieważ do szafki miało dostęp tylko kilka osób, poprosił je aby pozostawiły mu odbitki opuszków swych palców umoczonych w atramencie. Po wskazaniu, że jego odciski wyglądają tam samo jak te z butelki, jeden z studentów przyznał się. Nieco później jednego z lekarzy oskarżono o kradzież z włamaniem do domu, gdzie sprawca, wspinając się po okopconym sznurze, pozostawił na ścianie odcisk całej dłoni. Wprawdzie nie było jeszcze wówczas pewne czy wzory się nie powtarzają, ale wszyscy się zgodzili, że skóra na dłoniach lekarza nie mogła zmienić się w ciągu jednego dnia, gdy więc Faulds pokazał że odcisk nie pasuje do dłoni oskarżonego, policja uznała siłę dowodu i uwolniła go.

Zachęcony tym sukcesem Faulds, napisał artykuł opisujący swe odkrycia,. zawierający wyraźne wskazanie, że dysponując obszerną bazą takich śladów można by ułatwić rozwiązywanie zagadek kryminalnych. Gdy zaś w roku 1880 opublikował go Nature, okazało się ze Faulds nie był pierwszy. Już w latach 60. XIX wieku brytyjski urzędnik sir William Hershel, urzędujący w kolonii w Indiach, uznał że najlepszym sposobem osłabienia fali fałszerstw, będzie nakazywanie wypełniającym dokumenty aby "podpisywali" je przystawiając obok tekstu odcisk całej dłoni. Ułatwiało to prace w przypadku niepiśmiennych, którzy nie mieli wyrobionego podpisu, zwiększało strach oszustów których identyfikacja byłaby szybsza i odwoływało się do przesądnego powiązania śladów z osobą.

Po pewnym czasie, przekonawszy się że na żadnym z tysięcy odcisków wzory się nie powtarzają, poprzestał na odbitkach palca środkowego i kciuka.
Po artykule w Nature, Hershel zgłosił się jako wcześniejszy odkrywca tej metody identyfikacji, zaś pomiędzy obydwoma panami rozpoczął się zacięty spór o pierwszeństwo, trwający aż do XX wieku. Faulds próbował zainteresować swymi wynikami Scotland Yard, ale rewelacje te przyjęto wówczas chłodno, przedkładając nad odciski będący nowością system antropometryczny Bertillona, opisujący przestępców a pomocą danych wielkości, długości i rozstawy charakterystycznych cech budowy fizycznej

Jeszcze przed publikacją Faulds opisał swe badania w liście do Karola Darwina, którego jednak niespecjalnie one zainteresowały. Przekazał jednak list swemu kuzynowi Francisowi Galtonowi, który zajął się tą sprawą sądząc, że będzie w stanie znaleźć jakieś specyficzne cechy rasowe i dziedziczne, mogące pozwalać ocenić cechy charakteru, umysłowości czy wyglądu. Nie udało mu się to, ale uczynił co innego - opierając się na kartach Hershela i własnych badaniach wykazał unikalność linii papilarnych, a tym samym przydatność w identyfikacji. On też opisał występowanie we wzorach charakterystycznych punktów - minucji - będących miejscami zakończeń, skrzyżowań lub rozwidleń linii. Pozwoliło to lepiej porównywać ze sobą odciski. Owocem badań była książka wydana w 1892, a także liczne artykuły.

Przydatność nowej metody ujawniła się bardzo szybko, bo już w tym samym roku. 19 czerwca 1892 roku w argentyńskiej miejscowości Necochea popełnione zostaje brutalne morderstwo - nieznany sprawca zabija nożem dwójkę małych dzieci 27-letniej Franceski Rojas. Oskarża ona o zabójstwo swego sąsiada, którego zaloty odrzucała od dłuższego czasu. Tamtejsza policja bierze go na przesłuchanie, bardzo długie i brutalne, ale nie dochodzi do rozstrzygnięcia - podejrzany nie przyznaje się zaś jego znajomi potwierdzają alibi. Równocześnie wyjawia, że matka zabitych dzieci znalazła ostatnio narzeczonego, który, jak podsłuchał z jej narzekań, nie chce się z nią ożenić "dopuki ma te przeklęte bachory". Poszlak mogących potwierdzić którąś z teorii brakowało.Śledczy znaleźli się w impasie. Inspektor prowadzący sprawę odkrywa jednak, że mimo upływu kilku dni na futrynie drzwi zachował się bardzo wyraźny krwawy ślad palca sprawcy, i przypomina sobie Juliana Vuceticha, który mówił mu niedawno o tego typu dowodach.
Vucetich, będący urzędnikiem policyjnym z centrali, był nieoczekiwanie Chorwatem, a przy tym człowiekiem bardzo postępowym. Już w poprzednim roku natknął się na artykuły Galtona, po których ściągnął publikację Fauldsa i zaciekawiony nakazał policjantom pobierać odbitki palców od zatrzymywanych więźniów, mając nadzieję zestawienia bazy pomocnej w razie ich recydywy. Jego inspektor badający sprawę w Necochea pamiętając o tym, odpiłował od futryny kawałek ze śladem, po czym kazał zostawić odbitki palców wszystkim zamieszanym w sprawę. Wprawdzie techniki analizy były wówczas bardzo prymitywne, ale nie trzeba było wielkiego rozeznania, aby zobaczyć, że ślad pasuje do linii papilarnych matki.
Po okazaniu dowodów, Francesca Rojas przyznała się. Została skazana na dożywocie. Był to pierwszy taki przypadek w historii kryminalistyki.
Już w 1885 roku pobieranie śladów palców więźniów stało się standardową procedurą w Indiach. W miarę upływu czasu kolejne kraje przyjmowały tą technikę - na terenach Polski pierwsze przypadki stosowania pochodzą z 1909 roku.

Jak powstają ślady linii papilarnych?
Skóra jest stale zwilżana potem wydzielanym przez odpowiednie gruczoły. Pot zawiera głównie wodę, sole mineralne i proste związki organiczne, w tym węglowodany, aminokwasy i kwasy tłuszczowe. W dodatku skóra jest natłuszczana łojem. Mieszanka obu substancji tworzy na powierzchni opuszek palców cienką warstewkę. Gdy dotykamy jakiejś powierzchni, substancja potowo-tłuszczowa zostaje na nią naniesiona, ale z oczywistych względów tylko ta pokrywająca wystające listewki linii papilarnych nie zaś ta wewnątrz głębokich rowków między nimi. Na powierzchni pozostaje więc ślad listewek skórnych.
Jeszcze kwestia terminologii - przyjęło się powszechnie mówić o odciskach palców, jednak specjaliści uznają ten termin za niedokładny. Odcisk powstaje w wyniku odciskania kształtu w miękkim materiale, toteż za odcisk palca możemy uznać ślad pozostawiony na przykład w glinie, plastelinie, wosku czy nawet grubej warstwie brudu - i takie są też znane kryminalistyce. Inaczej wygląda rzecz gdy chodzi o dotykanie powierzchni twardych, wówczas pozostaje jedynie odbicie wzoru linii, ale nie wgłąb materiału. Dlatego za poprawny uważa się termin odbitki palców czy odbitki linii papilarnych. Można też mówić o śladach daktyloskopijnych czy wreszcie śladach palców.
Powstawanie odbitki linii papilarnych jest podobne do odbijania druku ze wzoru czcionki czy drzeworytu, co znalazło odzwierciedlenie w angielskim określeniu "fingerprint" czyli dosłownie "palcodruk".

Linie na opuszku palców są na dłuższą metę nieusuwalne - wprawdzie niektórzy przestępcy próbowali takich metod jak wytrawianie naskórka kwasem czy ścieranie, ale wraz z odradzaniem skóry, linie powracały. Potrafią odtworzyć się nawet po odcięciu skóry, zwłaszcza że końcówki palców mają dużą skłonność do odrastania. Kiedyś przy wycinaniu chwastów na działce zdarzył mi się przykry wypadek w wyniku którego odciąłem sobie nożem pół opuszka palca serdecznego. Miejsce to zagoiło się tak że dziś nie da się zauważyć śladów po cięciu. Z drugiej strony na jednym z kciuków w odcisku daje się zauważyć cieniutką bliznę - ślad po głębokim skaleczeniu z wczesnego dzieciństwa.

W sytuacji gdy ślad jest odciśnięty w miękkim materiale lub odwzorowany substancją o wyraźnym kolorze, a więc krwią czy smarem, nie ma problemu w jego znalezieniu i skopiowaniu. Wiele jednak odbitek jest niewidocznych, zwłaszcza na matowej powierzchni. Standardowym sposobem ujawniania tych śladów utajonych, jest nanoszenie drobnego proszku mającego większą skłonność do przylepiania się do potowo-tłuszczowej substancji niż do podłoża, zazwyczaj przy pomocy pędzelka o delikatnym włosiu. Standardowo używanymi proszkami są różne odmiany sadze, proszki metaliczne czy tlenki metali. Ciekawym przypadkiem są proszki magnetyczne, nakładane na powierzchnię w formie "pęczka" przyklejonego do magnesu, co zapewnia bardziej delikatne naniesienie bez ryzyka zostawienia rys po włoskach
Tak ujawnione ślady przenosi się na lepką folię, do której przykleja się proszek, i którą można umieścić w kartotekach.

Jednak poza tymi prostymi technikami, stosowane mogą być specyficzne odczynniki ujawniające utajnione ślady, zwłaszcza te starsze, które po wyschnięciu straciły lepkość i słabo przyklejają do siebie proszek. Jakie są to odczynniki? Pisałem już kiedyś o chemicznych testach na wykrycie krwi, teraz więc skupię się na chemicznych odczynnikach pozwalających na ujawnienie i utrwalenie niewidocznych odbitek daktyloskopowych nawet po upływie wielu lat

Jod
Użycie par jodu do ujawnienia niewidocznych odcisków było pierwszą nie proszkową metodą, znaną już od 1863 roku ale w kryminalistyce użytą dopiero na początku XX wieku. Zasada działania opiera się na niezwykle prostym mechanizmie - stały jod, mający postać grafitowego proszku, powoli paruje, zwłaszcza po lekkim podgrzaniu. Jego opary chętniej rozpuszczają się i gromadzą w tłuszczowym śladzie odcisku palca niż na większości badanych powierzchni. W efekcie po pewnym czasie odcisk zabarwia się na żółto lub pomarańczowo:
Metoda nadaje się do materiałów porowatych, zwłaszcza tych które mogłyby zostać uszkodzone przez płynne odczynniki a więc dokumentów a w pewnym stopniu też tkanin, dziś jednak ma ograniczone zastosowanie i chyba nie jest często używana. Ślady ujawnione tą metodą z czasem zanikają z powodu odparowywania jodu, toteż utrwala się je fotograficznie. W przypadku gdy uzyskany kontrast będzie zbyt słaby (powiedzmy - pomarańczowy odcisk na pożółkłym papierze) można go zwiększyć napryskując na powierzchnię zawiesinę skrobi. W reakcji z jodem tworzy ciemnogranatowy kompleks, wyraźnie odcinający się od tła. W tej formie jod jest nieco trwalszy ale i tak po pewnym czasie zabarwienie zanika. Opary jodu są silnie trujące i drażniące, toteż chcącym się bawić w takie próby radzę zachować dużą ostrożność, i zamiast dużych komór użyć szczelnie zamkniętego słoika. Po zaniknięciu jodowych śladów można użyć innych technik pozwalających na długotrwałe utrwalenie, może być to zatem metoda wstępna.[1]


Ninhydryna

Ninhydryna formalnie rzecz biorąc może być uznana za wodzian, czyli pochodną ketonu, o dużej reaktywności za sprawą oddziaływań dwóch sąsiadujących takich grup. Chętnie w związku z tym reaguje z aminami a także aminokwasami, będącymi składnikiem śladu tłuszczowego odcisku palca, tworząc w szeregu reakcji produkty o purpurowej barwie:

Tylko z niektórymi aminokwasami daje inne zabarwienie, a z aminami drugorzędowymi pomarańczowe sole. Znana w chemii do oznaczania aminokwasów i białek, w kryminalistyce znalazła zastosowanie w latach 50. do ujawniania odcisków na materiałach porowatych i chłonnych, jak papier czy drewno, na których wchodzący w drobne szczelinki proszek zupełnie zaciemniałby obraz.
Ninhydryna rozpuszczona w bezwodnym alkoholu musi być napryskana na badaną powierzchnię przy pomocy spryskiwacza dającego drobne kropelki lub przy pomocy spreju bo i takie zestawy stworzono. Ma bardzo drażniący zapach i prowokuje kaszel dlatego lepiej robić to przy dobrej wentylacji. Powierzchnia powinna być równo pokryta ale nie zmoczona. Aby zaszła reakcja pokrytą powierzchnię należy ogrzać - gdy tą metodą ujawniałem chromatogram bibułowy aminokwasów, wystarczało potraktowane suszarką nastawioną na grzanie, choć dla papieru dobrym sposobem mogłoby być użycie żelazka.


Z oczywistych względów metoda nie nadaje się do powierzchni ze skóry naturalnej, która zabarwiłaby się nam cała. W przypadku papieru nakredowanego, o lekko zasadowym odczynie, reakcja może bądź nie zajść bądź dać słabe zabarwienie. Zwykle przeciwdziała się temu przez dodatek kwasu octowego do roztworu.
Częstą metodą obróbki ujawnionych odbitek jest potraktowanie ich eterowo-alkoholowym roztworem soli cynku. Tworzy on z purpurowym związkiem kompleks o kolorze słabo pomarańczowym, ale za to świecący w ultrafiolecie, co może mieć znaczenie w przypadku gdy powierzchnia badana jest kolorowa. W późniejszych latach wymyślono szereg pochodnych ninhydryny oraz związków o podobnej reaktywności, mających zastosowanie w szczególnych przypadkach. Jednym z nich jest Diazafluorenon (DFO).
Związek ten został zastosowany w kryminalistyce stosunkowo niedawno. Pod względem budowy oraz działania jest podobny do ninhydryny dając przy tym dość słabe, pomarańczowe zabarwienie, ma jednak pewną cenną właściwość - w świetle niebieskim fluoryzuje na żółto, co pozwala zauważyć ujawnione ślady nawet gdy są one bardzo słabe, działa więc podobnie do cynkowego kompleksu ninhydryny ale jest prostszy w użyciu.
Dobre cechy ninhydryny i DFO łączy w sobie inna pochodna, 5-metylotioninhydryna(5-MTN). Ze śladami aminokwasów daje purpurowe zabarwnienia, lecz po potraktowaniu solami cynku staje się ono tylko ciemniejsze. Pod wpływem zielonego światła cynkowy kompleks fluoryzuje na żółto co obserwuje się przez filtr czerwony. Istnieje jeszcze specjalna wersja ninhydryny do zastosowania na papierze termicznym (paragony sklepowe).[2] [3]


Super klej
Często dziś używaną metodą ujawniania niewidocznych odcisków na twardych, gładkich powierzchniach jest metoda cyjanoakrylowa. Odkryto ją w dużej mierze przypadkowo - japoński technik kryminalistyki Fuseo Matsumur zajmował się śladami mikrowłókien i włosów, które zbierał i zabezpieczał na szklanych płytkach pokrytych warstewką szybko schnącego kleju. Płytki przechowywał potem w pojemniku z przegródkami, tak aby płytki nie stykały się ze sobą i aby nie zanieczyszczały ich włókna spoza miejsca zbrodni. Przeglądając płytki zauważył w 1977 roku, że na odwrotnej stronie po pewnym czasie przechowywania ujawniają się odciski jego palców, dając niezmywalne białe ślady. Zainteresował tym kolegów i wkrótce Japończycy opracowali metodę w takiej formie jaką znamy dziś.
Wszystkie szybko schnące superkleje cyjanoakrylowe, zawierają głównie takie związki jak 2-cyjanoakrylan metylu, etylu lub butylu. Są to zatem estry pochodnej kwasu akrylowego podstawionej grupą nitrylową przy drugim węglu. Taka struktura jest bardzo nietrwała, grupa nitrylowa z jednej strony a estrowa z drugiej, odciągają elektrony z fragmentu łańcucha z wiązaniem podwójnym. W efekcie ten fragment staje się podatny na atak grup nukleofilowych, a więc aktywnych cząstek z parą elektronową. Przykładem takiego nukleofila może być grupa hydroksylowa powstająca z dysocjacji wody. Jej przyłączenie do końcówki wiązania podwójnego powoduje jego pęknięcie i wytworzenie karboanionu. Ten jest dobrym nukleofilem i reaguje z kolejną cząsteczką akrylanu. Zapoczątkowana śladami jonów hydroksylowych reakcja biegnie dalej sama, tworząc polimer dobrze wiążący ze sobą powierzchnie klejone.

A co to ma wspólnego z ujawnianiem odcisków palców?
Monomery cyjanoakrylowe są lotne, co zresztą jest jedną z ich wad, bowiem w większych stężeniach stają się trujące. Monomer akrylowy nie powinien reagować z większościami powierzchni, może natomiast wchodzić w reakcję z aminokwasami, lipidami i cukrami substancji śladów palców, zwłaszcza w obecności wilgoci.

Badany przedmiot umieszcza się w szczelnej komorze, w której umieszcza się naczynie z klejem, bądź posmarowaną nim płytkę czy folię. Komora jest podgrzewana a powietrze wewnątrz nawilżane. Po upływie odpowiedniego czasu kombinacja par kleju i wilgoci powoduje ujawnienie śladów. Możliwe jest też użycie namiotów gdy badany przedmiot jest większy, bądź miejscowo specjalnego "pistoletu" odparowującego klej i wydmuchującego opary na badaną powierzchnię.

Ujawnione tą metodą ślady są białe lub kremowe,  aby zwiększyć kontrast i lepiej je uwidocznić, na przykład proszkami; często stosuje się fluorescencyjne barwniki chętnie łączące się z substancją polimerowo-tłuszczową, na przykład Basic Yellow 40 świecący w ultrafiolecie na żółto-zielono, Safranina O świecąca w zielonym świetle na czerwono albo Rodamina 6G świecąca na żółto. Używa się kilkunastu takich preparatów, zależnie od rodzaju powierzchni i dostępności[4][5]

Azotan srebra
Ta metoda nie jest zbyt często używana, choć znano ją już w XIX wieku. Właściwie używa się jej do poszukiwania śladów tak starych że pozostałe metody nie są w stanie ich ujawnić, ale dopiero na końcu, jest bowiem niszcząca. Jako pierwsza ze śladu ulatnia się woda, po niej krótkołańcuchowe kwasy tłuszczone (skóra dziecka wytwarza tylko takie kwasy przez co odciski palców dziecka dość szybko zanikają) na koniec rozkładowi ulegają aminokwasy. Co więc może pozostać na powierzchni, gdy wszystko inne już zniknie? Sole mineralne a przede wszystkim chlorek sodu obecny w pocie.
Badane powierzchnie należy spryskać azotanem srebra ale tak aby nie były zupełnie zmoczone. Jony srebra w reakcji z jonami chlorkowymi dadzą biały, nierozpuszczalny osad chlorku srebra, który po wystawieniu na słońce ciemnieje pozostawiając ciemne plamy. Takie same plamy powstaną na ubraniu oraz naszej skórze, dlatego przy użyciu tego związku można się na prawdę mocno i dosyć trwale pobrudzić. Metoda nadaje się do papieru i skóry, nie sprawdza się przy drewnie i tkaninach. Jeśli badana powierzchnia była wystawiona na działanie wody, ślady zostaną zmyte. Z oczywistych względów przeszkadzają tu sole mineralne których obecność zaciemnia tło. [6]

Gencjana
Fiolet krystaliczny lub metylowy, to mieszanina związków o budowie podobnej do fenoloftaleiny. Dawniej używana do farbowania wełny czy jako barwnik ołówka kopiowego, dziś też niekiedy do odkażania ran. Jest barwnikiem lipofilowym, w związku z tym ma skłonność do wchłaniania przez tłuszcze. Na tym też opiera się jej działanie.

W kryminalistyce znalazła zastosowanie do uwidaczniania odcisków na materiałach lepkich, jak na przykład taśmy klejące, etykietki itp. Badany przedmiot zanurza się w jej ok. 2% roztworze na dwie minuty, po czym spłukuje czystą wodą. Odbitki linii papilarnych zabarwiają się wówczas na fioletowo[7]

Czerń Sudan 
Ciemny barwnik o właściwościach lipofilowych, działający tak samo jak gencjana - chętniej absorbuje się w tłuszczowym śladzie niż w podłożu. Ma zastosowanie na materiałach klejących, zatłuszczonych lub woskowatych, na przykład nawoskowany papier czy folie spożywcze. Może być też użyta do zabarwienia śladów ujawnionych metodą cyjanoakrylową na przykład w przypadkach gdy dotyczą one powierzchni jasnych, nie chłonnych i fluoryzujących.[8]

Lumicyano?
Najnowsza technika kryminalistyczna, jest połączeniem kilku wartościowych cech. Tak jak pochodne ninhydryny miały łączyć zdolność ujawniania kontrastowych śladów z fluorescencją, tak lumicyano łączy technikę cyjanoakrylową z luminescencyjną bez potrzeby stosowania dodatkowych odczynników. Pomysł jest prosty - do cząsteczki cyjanoakrylanu podczepiono odpowiednią grupę, w tym przypadku jest to tetrazyna - pięciokątny pierścień z czterema atomami azotu.
Tak samo jak superklej, po ogrzaniu paruje i polimeryzuje w śladzie tłuszczowym. Ujawniony kremowy odcisk fluoryzuje w ultrafiolecie.[9]
Technika została już przetestowana w laboratoriach kryminalistycznych. Wyniki badań pojawiły się w tym roku.
-------
* http://en.wikipedia.org/wiki/Fingerprint
* http://onin.com/fp/fphistory.html
* http://www.bvda.com/EN/sect1/en_1_6a.html
* http://en.wikipedia.org/wiki/Henry_Faulds
* http://en.wikipedia.org/wiki/Sir_William_Herschel,_2nd_Baronet
* http://en.wikipedia.org/wiki/Francis_Galton
* http://en.wikipedia.org/wiki/Juan_Vucetich
* http://en.wikipedia.org/wiki/Francisca_Rojas

[1] http://makezine.com/forensics-laboratory-82-revealing-l/
[2] www.viewsfromscience.com/documents/webpages/led_fluorescence_p7.html
[3]  http://makezine.com/forensics-laboratory-83-revealing-l/
[4]  http://www.bvda.com/EN/sect1/en_1_9a.html
[5] http://makezine.com/projects/fingerprinting-with-super-glue/
[6] http://makezine.com/laboratory-84-revealing-latent-fing/
[7] http://makezine.com/laboratory-86-revealing-latent-fing/
[8] http://www.bvda.com/EN/sect1/en_1_12a.html
ResearchBlogging.org [9]  Cosimo Prete, Laurent Galmiche, Fifonsi-Gwladys Quenum-Possy-Berry, Clémence Allain, Nicolas Thiburce, Thomas Colard (2013). Lumicyano™: A new fluorescent cyanoacrylate for a one-step luminescent latent fingermark developmen Forensic Science International , 1-3 DOI: 10.1016/j.forsciint.2013.07.008

piątek, 22 listopada 2013

Ostatnio w domu

Na drugim blogu pisałem na wiosnę o tym jak robi się syropek z kwiatów mniszka, bardzo podobny do miodu. Stopniowo zużywam zapasik a otwierając słoiki zauważyłem że część cukru wykrystalizowała na dnie w formie bardzo grubych kryształów. Te niestety mocno przyrosły do dna i trudno jest je oderwać bez skruszenia. Ostatnio jednak udało mi się oderwać dwa kryształki przyrosłe do ścianki i jak na takie warunki bardzo kształtne:



Ten największy ma 3 cm długości. Cukiereczek...

Duże skupiska kryształów cukru na patyczku nazywane są Candy Rock, można je stosunkowo łatwo zrobić, podstawową instrukcję macie tutaj:
Powstające pałeczki kryształów mogą posłużyć za oryginalny smakołyk. Będę musiał spróbować sam, ale na razie zajmę się syropkiem.
A tu poniżej jeszcze jeden pomysł wykorzystania dużych kryształów cukru - po pokryciu lakierem jako część biżuterii:  http://www.dezeen.com/2007/06/25/unsustainable-by-greetje-van-helmond/

poniedziałek, 18 listopada 2013

Synteza I. - etap pierwszy, męczący

Dawno dawno temu... jeszcze przed wakacjami, obiecywałem że zacznę pisać o syntezach wykonywanych w ramach pracowni magisterskiej. Niestety jak widać zrobił mi się w tej kwestii znaczny poślizg, co zresztą dotyczy wszystkich dłuższych postów. Ledwie coś zacznę, tracę zapał do dokańczania i odkładam rzecz na później. To "zatwardzenie pióra" sprawia że wolę już niczego nie obiecywać.

Skoro już w jednym z wcześniejszych wpisów obszernie objaśniłem o co chodzi z tymi syntezami asymetrycznymi, mogę przejść do opisu pierwszej wykonywanej syntezy, jeszcze z poprzedniego roku studiów. Wówczas to, w drugim semestrze czwartego roku, mając czas przeznaczony na laboratorium w wymiarze jednego dnia tygodniowo, raczej wprawiałem się i wdrażałem do pracy laboratoryjnej, toteż to co robiłem było raczej powtórzeniem już przeprowadzanej syntezy, a nie rozpoczynaniem czegoś nowego. Miało to tą dobrą stronę, że w razie wątpliwości mogłem zajrzeć do notatek osoby robiącej to samo w zeszłym roku.

Moim związkiem końcowym miała być 3-bromo-5-fenylo-1,2,4-triazyna, a uzyskać ją miałem z wyjściowych związków niecyklicznych. Całość reakcji powinna wyglądać tak:


Pierwszy etap który omówię w tym wpisie, dotyczył cyklizacji i wyodrębnienia produktu.
Substratami wyjściowymi był fenyloglioksal i karbamohydrazonotioester metylowy (chyba, po angielsku Methyl carbamohydrazonothioate) w formie jodowodorku. Ten drugi jest tu dostarczycielem dwóch azotów połączonych wiązaniem; grupa tioestrowa jest tu sposobem zabezpieczenia grupy hydroksylowej, która w przeciwnym wypadku też mogłaby wchodzić w reakcję. W obecności słabej zasady, jaką jest wodorowęglan sodu następuje kondensacja grup aminowych do węgli karboksylowych, tworząc sześcioczłonowy pierścień:

Możliwy produkt uboczny, z podstawnikami w ustawieniu 3,6 (a więc para-trizyna), nazywany dalej izomerem 6, powstaje gdy cząsteczki połączą się obrócone, jest go jednak mało, o czym później.
Zgodnie z przepisem odważyłem fenylogliokasal, mający w tym przypadku postać żółtawego proszku o bardzo niemiłym zapachu - dosyć ostrym, jakby czosnkowym ale z kwaśną nutą. Podobnie pachniał kiedyś słoik zepsutych kiszonych ogórków. 

Drugi związek miał formę białego proszku, przechowywano go w lodówce z uwagi na niestabilność. Glioksal i węglan sodu rozpuściłem w kolbie i dodałem drugi substrat. Całość umieściłem na mieszadle magnetycznym (wcześniej wrzuciłem magnetyczny drops), obłożyłem z zewnątrz lodem  i tak to się miało kręcić całą dobę.

Kolejnego dna po ostatnim wykładzie przyszedłem zobaczyć co wyszło. A wyszło mianowicie to, że zastałem w kolbce żółtawą mieszaninę poreakcyjną. Należało ją teraz rozdzielić. Najpierw ekstrahowałem ją chlorkiem metylenu aby oddzielić węglan sodu i częściowo zhydrolizowany hydrazyd, otrzymując brązowy roztwór:

Potem oczywiście nałożyłem na kolumnę i rozdzieliłem chromatograficznie. Wcześniejsze próby na płytce pokazały że w ekstrakcie miałem głównie pożądany produkt i ślady izomeru 6, możliwe do rozdzielenia. Kwestię rozdziału na kolumnie preparatywnej, jej wykonywanie i problemy z tym związane, już tu omawiałem, więc nie będę się u szczegółowo powtarzał. Początkowo użyłem mieszanki CH2Cl2:metanol 100:1 która na płytce dawała dobre rezultaty. Niestety na kolumnie nie specjalnie.
Związek główny strasznie ogonował - za czołem zawierającym główną porcję ciągnął się "ogon" zawierający produkt, co oznaczało że do całkowitego wymycia potrzebne jest przelanie przez kolumnę dużej ilości eluentu. Zdaje się że zużyłem w ten sposób ponad pół butelki chlorku metylenu zbierając 12 frakcji aż prowadząca uznała, że lepiej użyć mieszanki z większa ilością metanolu i dopiero wówczas związek wymył się całkiem.
Kolejnego dnia miałem zająć się przede wszystkim odparowaniem czystych frakcji na wyparce. Jest to przyrząd w którym roztwór umieszczony zostaje w kulistej kolbie zanurzonej w misie z ciepłą wodą i podłączony do chłodnicy pod obniżonym ciśnieniem. Kombinacja niskiego ciśnienia, podgrzewania i rozprowadzania cieczy na ściankach powoduje szybkie odparowanie rozpuszczalnika.

Tak więc nalewałem do kolby kolejne frakcje, i odparowywałem. Pierwsza, drugą, trzecią, czwartą, piątą... a gdy byłem przy dziesiątej zdarzyła się katastrofa. 
Kolbka podłączona do wyparki trzyma się obracającego szlifu trochę za sprawą tarcia a trochę za sprawą przyssania. Dla pewności można założyć plastikowy klips. Gdy odparowałem już wszystkie wcześniejsze frakcje, odszedłem na chwilę a przez ten czas z tej samej pompy ssącej skorzystał ktoś inny aby coś sobie przesączyć. I wyłączył pompę. Gdy powróciłem nie zwróciłem na to uwagi - wlałem do kolbki jedenastą frakcję, nasunąłem ją na szlif, zanurzyłem w misie i włączyłem obrót. Kolbka obróciła się kilka razy i wpadła do misy...
Oczywiście nie do końca odparowany roztwór wylał się do środka i będąc cięższym od wody osiadł na dnie. Łatwo sobie wyobrazić moją reakcję. No ale cóż, nie było na co się dalej złościć, trzeba było ratować co się da. Wybrałem wodę z misy po czym odciągnąłem roztwór z dna pipetką. Zanieczyszczony różnymi osadami z dna i wodą roztwór wlałem do kolby i zasypałem środkiem suszącym. I tak skończył się dzień kolejny.
Na następnej pracowni odparowałem ocaloną frakcję produktu, po czym nałożyłem wysuszoną i przesączoną mieszaninę powypadkową, po czym... nałożyłem na kolumnę i rozdzielałem.

Tym razem poszło mi to szybciej za sprawą lepiej dobranego układu, ale też zeszło na to trochę czasu. Na koniec porównałem obie części ze wzorcem produktu i odparowałem wspólnie, w jednej kolbie, otrzymując 1,5 grama związku. Po odparowaniu początkowo utworzył olejek, który ładnie wykrystalizował:

Porządnie mnie wymęczył ten etap.

niedziela, 17 listopada 2013

Ostatnio w laboratorium (35.)

Ostatnio w laboratorium badałem temperaturę topnienie otrzymanego związku. Jeszcze tu o tym nie pisałem, ale na pracowni zajmuję się syntezą, może jak pokonam różne zaległości do uda się dodać jakiś bardziej aktualny wpis na temat tej pracy. Na razie jednak migawka.

Badanie temperatury topnienia jest stosunkowo szybką i tanią metodą potwierdzenia czystości związku, jeśli oczywiście mamy z czym ją porównać. Im szerszy zakres topnienia tym bardziej zanieczyszczony związek. O jednym ze sposobów pomiaru już pisałem w jednym ze starych wpisów, wtedy obserwowałem zawartość kapilarki w ogrzewanej komorze, teraz natomiast obserwowałem kryształki na ogrzewanym szkiełku pod mikroskopem.
Małą próbkę oczyszczonego ligandu umieściłem między szkiełkami nakrywkowymi i położyłem na podgrzewanym stoliku mikroskopu. Jednym okiem patrzyłem na kryształki a drugim zerkałem na wskazania termopary czekając na moment aż zaczną się topić:

W tym akurat przypadku czekałem długo bo topiły się dopiero w 270 stopniach. Jest to związek słabo rozpuszczalny i nie wiem czy będzie się nadawał do syntez jakie mam badać.

niedziela, 10 listopada 2013

Skaczące kryształy

Gdy usłyszałem o skaczących kryształach, byłem bardzo zaskoczony ale i zaciekawiony. Kryształy pewnych substancji w odpowiednich warunkach deformują się na tyle gwałtownie, że są w stanie poskoczyć, niejednokrotnie na stosunkowo dużą odległość.

Stan krystaliczny charakteryzuje się regularnym, sieciowym ułożeniem cząstek i niejednorodnością właściwości fizycznych - na przykład wzdłuż pewnego wymiaru kryształ przewodzi prąd lepiej niż w innym, albo ogrzany wydłuża się w pewnym kierunku a w innym kurczy. Zależnie od stopnia powiązania budujących go cząstek, możemy mieć do czynienia z kryształem jonowym, złożonym z jonów soli połączonych w trwałą siatkę; z kryształem kowalencyjnym gdzie podobne do siebie atomy łączą się wiązaniami, bądź z kryształem molekularnym gdzie osobne cząsteczki związku nie są ze sobą trwale połączone, a jedynie upakowały się w przestrzeni na tyle ciasno, że tworzą ciało stałe.
Kwestia oddziaływań mechanicznych na właściwości kryształów była już dosyć dokładnie zbadana. Wiadomo że niektóre są na tyle plastyczne, że potrafią deformować się pod wpływem stale działających sił - przykładem sól kamienna która pod wpływem dużego ciśnienia nabiera skłonności do płynięcia. Inne kryształy reagują w jeszcze ciekawszy sposób - piezoelektryki pod wpływem ściskania elektryzują się z jednym ładunkiem na jednym końcu i drugim na przeciwnym. Różnice wytworzonych w ten sposób napięć potrafią być bardzo duże; kostka kryształu górskiego ściśnięta siłą 500 kN wytwarza różnicę napięć 12 tysięcy V, czego praktycznym wykorzystaniem z jakim każdy się spotkał, są zapalniczki piezoelektryczne - nacisk na przycisk deformuje grupę kryształów a różnica napięć generuje iskrę.
Piezoelektryki to substancje których komórki krystaliczne (najmniejsze stałe elementy sieci) nie mają środka symetrii a składają się z cząstek o różnym ładunku. Powoduje to że środki układu ładunków dodatnich i ujemnych nie pokrywają się ze sobą tworząc niewielki dipol. Ściskanie kryształu deformuje go, ściska komórki krystaliczne i przez zmianę ich kształtu rozsuwa środki układu ładunków - każda komórka staje się więc dipolem elektrycznym o wielkości zależnej od siły ucisku.

Sumą dipolów poszczególnych komórek jest naelektryzowanie się dwóch końców całego kryształu. Obserwuje się też efekt odwrotny - rozciąganie się kryształu pod wpływem przyłożonego ładunku. Wykorzystuje się to w zegarkach kwarcowych - piezoelektryczny kwarc pod wpływem napięcia z baterii nieco rozszerza się a potem kurczy, wydzielając mały impuls elektryczny; częstość pierwotna drgań daje 32768 impulsów na sekundę. Elektroniczne podzielniki zmniejszają ilość impulsów o połowę i po piętnastu takich podziałach pozostaje nam stały sygnał jeden impuls na sekundę


Wszystkie te efekty mechaniczne następują stopniowo, zmieniając się płynnie zależnie od przyłożonych sił. Dlatego zaskoczeniem było odkrycie silnych deformacji mechanicznych, które następują dosłownie skokowo.
Pierwszymi zaobserwowanymi skaczącymi kryształami były kryształy bromku oksytropium - leku rozkurczowego, od dawna stosowanego w medycynie. W zasadzie ciekawe że przez długi czas ta właściwość umykała badaczom, choć zapewne mogli ją obserwować podczas często stosowanego do identyfikacji testu pomiaru temperatury topnienia, efekt następuje bowiem podczas ogrzewania - niewielkie kryształki związku nagle podskakują na odległość do kilku centymetrów. Zjawisko zarejestrowano na filmie:
Kryształy przeskakują w całości lub po pęknięciu. Jaki jest mechanizm zjawiska?
Bromek oksytropium składa się z dwóch części: tricyklicznego kationu epoksyazanonyliowego połączonego przez elastyczne wiązanie estrowe z  częścią aromatyczną, zaś aniony bromkowe zobojętniają cząsteczkę; podejrzewam że dodatkową stabilizację układu zapewnia nie zaznaczone wiązanie wodorowe.

Tylko wiązanie estrowe nie jest sztywne i możliwy jest obrót jednej części cząsteczki względem drugiej, co jednak nie następuje w niskich temperaturach. W miarę wzrostu temperatury wzrasta energia drgań cząsteczki aż możliwe staje się przełamanie bariery rotacji i uzyskanie odmiennego kształtu. Powoduje to nagromadzenie się naprężeń uwalnianych jako jedno silne drgnięcie w chwili odblokowania rotacji większości cząsteczek. Kryształ wykonuje skok.[1] Zjawisko nazwano thremosalient effect co można by jak sądzę przetłumaczyć jako "efekt termosprężnujący" ("termoskokowy" źle by brzmiał, choć takie byłoby tłumaczenie dosłowne, od łacińskiego źródłosłowu saliens - skakanie, podskakiwanie).

Po tym odkryciu znaleziono inne, działające na innej zasadzie, ciekawa jest na przykład praca w której odkryto, że kryształy pewnych skomplikowanych kompleksów kompleksów metali przejściowych z perfluorowanym acetyloacetonem i ligandem będącym N-tlenkiem nitronylu, po utworzeniu wykazują skokowe ruchy polegające na podskokach i fragmentacji, trwające samoczynnie przez kilka tygodni. Źródłem okazała się reakcja eliminacji tlenu, powodująca zmiany upakowania cząstek kompleksu a co za tym idzie także deformacje kształtu kryształu.[2] Stosunkowo prostym związkiem którego kryształy ulegają podskakiwaniu jest 1,2,4,5-tetrabromobenzen.

Najciekawszy jest jednak efekt odkryty zupełnie niedawno - podskoki lub wręcz wybuchowa fragmentacja kryształy pod wpływem światła ultrafioletowego. Igiełkowate kryształki o wielkości do 1 mm odsakiwały nawet na kilkanaście centymetrów, a więc na odległość tysiące razy większą od własnej wielkości. Przy pomocy szybkiej kamery i ten efekt dało się utrwalić:

Są to kryształy stosunkowo prostego i jak sądzę łatwego do otrzymania kompleksu kobaltu [Co(NH3)5(NO2)]Cl(NO3) , zaś mechanizm powstawania tak silnych naprężeń, opiera się na jeszcze innej zasadzie. Jednym z ligandów wokół centralnego atomu kobaltu jest ligand nitrytowy NO2, który łączy się z kobaltem za pomocą wiązania koordynacyjnego poprzez azot. Ligand ten mógłby jednak równie dobrze połączyć się poprzez któryś z tlenów, tworząc nieco inny kompleks, i jak się wydaje, podczas naświetlana ultrafioletem taka przemiana właśnie następuje.
Ligand obraca się i przyłącza od innej strony co zmienia upakowanie cząstek, a ponieważ obracają się praktycznie wszystkie w krysztale, bez wytwarzania nowej fazy krystalicznej, dochodzi do nagromadzenia się naprężeń mechanicznych. Znane są dwie formy krystaliczne tego kompleksu - jedna, znana już dotychczas, o pokroju wykształconym przez dodatek inhibitora powodującego zmianę kształtu zarodka. Takie kryształy po oświetleniu ultrafioletem wyginały się, z wypukłością skierowaną w stronę źródła światła, a po kilku godzinach powracały do stanu pierwotnego.
Druga forma to kryształy otrzymane bez dodatków, mniej plastyczne, w których naprężenia nie mogły stopniowo uwalniać się w ciągłym ruchu. Mogło to nastąpić dopiero w wyskoku, do którego dochodziło na kilka sposobów - przez odłamanie końcówki, odłamanie naroży, przełamanie na pół lub podskok całego kryształu bez rozpadu
Czasem kryształ roztrzaskiwał się na kilka kawałków. Zjawisko nazwano "photosalient effect" co tłumaczyłbym jako "efekt fotosprężynujący".

Autorzy artykułu na temat odkrycia przypuszczają, że może przydać się w maszynach molekularnych lub, po opanowaniu, w materiałach w rodzaju sztucznych mięśni.[3] Osobiście obstawiałbym jednak że w zestawieniu z kryształami piezoelektrycznymi mógłby służyć go generowania pojedynczych silnych impulsów, na przykład w pewnych typach czujników.
--------
ResearchBlogging.org [1] Skoko Ž, Zamir S, Naumov P, & Bernstein J (2010). The thermosalient phenomenon. "Jumping crystals" and crystal chemistry of the anticholinergic agent oxitropium bromide. Journal of the American Chemical Society, 132 (40), 14191-202 PMID: 20860383 
[2] Ovcharenko VI, Fokin SV, Fursova EY, Kuznetsova OV, Tretyakov EV, Romanenko GV, & Bogomyakov AS (2011). "Jumping crystals": oxygen-evolving metal-nitroxide complexes. Inorganic chemistry, 50 (10), 4307-12 PMID: 21491890
[3]  Prof. Panče Naumov, Dr. Subash Chandra Sahoo, Dr. Boris A. Zakharov, Prof. Elena V. Boldyreva (2013). Dynamic Single Crystals: Kinematic Analysis of Photoinduced Crystal Jumping (The Photosalient Effect) Angewandte Chemie International Edition DOI: 10.1002/anie.201303757
 [To swoją drogą dosyć dziwna praca. We wstępie autorzy odnoszą się do tego iż dotychczas samoczynne ruchy obserwowano w przyrodzie ożywionej, a więc u zwierząt i u roślin, zaś efekt fotosprężynujący jest ciekawym przykładem ruchów w przyrodzie nieożywionej. Ten fragment został opatrzony aż ośmioma przypisami do prac i książek na temat ruchów w świecie zwierzęcym i przypadkowych prac na temat ruchów roślin. Nie wiem na ile zgadza się to z przyjętymi zwyczajami, ale wygląda mi na sposób zwiększenia objętości bibliografii, aby - kto wie? - całość lepiej wyglądała]